// Copyright (c) 2014-2019, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #pragma once #include #include #include #include #include "misc_language.h" #include "common/perf_timer.h" class performance_timer { public: typedef boost::chrono::high_resolution_clock clock; performance_timer() { m_base = clock::now(); } void start() { m_start = clock::now(); } int elapsed_ms() { clock::duration elapsed = clock::now() - m_start; return static_cast(boost::chrono::duration_cast(elapsed).count()); } private: clock::time_point m_base; clock::time_point m_start; }; struct Params { bool verbose; bool stats; unsigned loop_multiplier; }; template class test_runner { public: test_runner(const Params ¶ms) : m_elapsed(0) , m_params(params) , m_per_call_timers(T::loop_count * params.loop_multiplier, {true}) { } bool run() { T test; if (!test.init()) return false; performance_timer timer; timer.start(); warm_up(); if (m_params.verbose) std::cout << "Warm up: " << timer.elapsed_ms() << " ms" << std::endl; timer.start(); for (size_t i = 0; i < T::loop_count * m_params.loop_multiplier; ++i) { if (m_params.stats) m_per_call_timers[i].resume(); if (!test.test()) return false; if (m_params.stats) m_per_call_timers[i].pause(); } m_elapsed = timer.elapsed_ms(); return true; } int elapsed_time() const { return m_elapsed; } int time_per_call(int scale = 1) const { static_assert(0 < T::loop_count, "T::loop_count must be greater than 0"); return m_elapsed * scale / (T::loop_count * m_params.loop_multiplier); } uint64_t per_call_min() const { uint64_t v = std::numeric_limits::max(); for (const auto &pt: m_per_call_timers) v = std::min(v, pt.value()); return v; } uint64_t per_call_max() const { uint64_t v = std::numeric_limits::min(); for (const auto &pt: m_per_call_timers) v = std::max(v, pt.value()); return v; } uint64_t per_call_mean() const { uint64_t v = 0; for (const auto &pt: m_per_call_timers) v += pt.value(); return v / m_per_call_timers.size(); } uint64_t per_call_median() const { std::vector values; values.reserve(m_per_call_timers.size()); for (const auto &pt: m_per_call_timers) values.push_back(pt.value()); return epee::misc_utils::median(values); } uint64_t per_call_stddev() const { if (m_per_call_timers.size() <= 1) return 0; const uint64_t mean = per_call_mean(); uint64_t acc = 0; for (const auto &pt: m_per_call_timers) { int64_t dv = pt.value() - mean; acc += dv * dv; } acc /= m_per_call_timers.size () - 1; return sqrt(acc); } uint64_t min_time_ns() const { return tools::ticks_to_ns(per_call_min()); } uint64_t max_time_ns() const { return tools::ticks_to_ns(per_call_max()); } uint64_t median_time_ns() const { return tools::ticks_to_ns(per_call_median()); } uint64_t standard_deviation_time_ns() const { return tools::ticks_to_ns(per_call_stddev()); } private: /** * Warm up processor core, enabling turbo boost, etc. */ uint64_t warm_up() { const size_t warm_up_rounds = 1000 * 1000 * 1000; m_warm_up = 0; for (size_t i = 0; i < warm_up_rounds; ++i) { ++m_warm_up; } return m_warm_up; } private: volatile uint64_t m_warm_up; /// m_per_call_timers; }; template void run_test(const std::string &filter, const Params ¶ms, const char* test_name) { boost::smatch match; if (!filter.empty() && !boost::regex_match(std::string(test_name), match, boost::regex(filter))) return; test_runner runner(params); if (runner.run()) { if (params.verbose) { std::cout << test_name << " - OK:\n"; std::cout << " loop count: " << T::loop_count * params.loop_multiplier << '\n'; std::cout << " elapsed: " << runner.elapsed_time() << " ms\n"; if (params.stats) { std::cout << " min: " << runner.min_time_ns() << " ns\n"; std::cout << " max: " << runner.max_time_ns() << " ns\n"; std::cout << " median: " << runner.median_time_ns() << " ns\n"; std::cout << " std dev: " << runner.standard_deviation_time_ns() << " ns\n"; } } else { std::cout << test_name << " (" << T::loop_count * params.loop_multiplier << " calls) - OK:"; } const char *unit = "ms"; uint64_t scale = 1000000; int time_per_call = runner.time_per_call(); if (time_per_call < 30000) { time_per_call = runner.time_per_call(1000); #ifdef _WIN32 unit = "\xb5s"; #else unit = "µs"; #endif scale = 1000; } std::cout << (params.verbose ? " time per call: " : " ") << time_per_call << " " << unit << "/call" << (params.verbose ? "\n" : ""); if (params.stats) { uint64_t min_ns = runner.min_time_ns() / scale; uint64_t med_ns = runner.median_time_ns() / scale; uint64_t stddev_ns = runner.standard_deviation_time_ns() / scale; std::cout << " (min " << min_ns << " " << unit << ", median " << med_ns << " " << unit << ", std dev " << stddev_ns << " " << unit << ")"; } std::cout << std::endl; } else { std::cout << test_name << " - FAILED" << std::endl; } } #define QUOTEME(x) #x #define TEST_PERFORMANCE0(filter, params, test_class) run_test< test_class >(filter, params, QUOTEME(test_class)) #define TEST_PERFORMANCE1(filter, params, test_class, a0) run_test< test_class >(filter, params, QUOTEME(test_class)) #define TEST_PERFORMANCE2(filter, params, test_class, a0, a1) run_test< test_class >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ">") #define TEST_PERFORMANCE3(filter, params, test_class, a0, a1, a2) run_test< test_class >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ", " QUOTEME(a2) ">") #define TEST_PERFORMANCE4(filter, params, test_class, a0, a1, a2, a3) run_test< test_class >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ", " QUOTEME(a2) ", " QUOTEME(a3) ">") #define TEST_PERFORMANCE5(filter, params, test_class, a0, a1, a2, a3, a4) run_test< test_class >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ", " QUOTEME(a2) ", " QUOTEME(a3) ", " QUOTEME(a4) ">") #define TEST_PERFORMANCE6(filter, params, test_class, a0, a1, a2, a3, a4, a5) run_test< test_class >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ", " QUOTEME(a2) ", " QUOTEME(a3) ", " QUOTEME(a4) ", " QUOTEME(a5) ">")