// Copyright (c) 2018-2022, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "gtest/gtest.h" #include "crypto/crypto.h" #include "ringct/rctOps.h" #include "ringct/multiexp.h" #define TESTSCALAR []{ static const rct::key TESTSCALAR = rct::skGen(); return TESTSCALAR; }() #define TESTPOW2SCALAR []{ static const rct::key TESTPOW2SCALAR = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; return TESTPOW2SCALAR; }() #define TESTSMALLSCALAR []{ static const rct::key TESTSMALLSCALAR = {{5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; return TESTSMALLSCALAR; }() #define TESTPOINT []{ static const rct::key TESTPOINT = rct::scalarmultBase(rct::skGen()); return TESTPOINT; }() static rct::key basic(const std::vector &data) { ge_p3 res_p3 = ge_p3_identity; for (const auto &d: data) { ge_cached cached; ge_p3 p3; ge_p1p1 p1; ge_scalarmult_p3(&p3, d.scalar.bytes, &d.point); ge_p3_to_cached(&cached, &p3); ge_add(&p1, &res_p3, &cached); ge_p1p1_to_p3(&res_p3, &p1); } rct::key res; ge_p3_tobytes(res.bytes, &res_p3); return res; } static ge_p3 get_p3(const rct::key &point) { ge_p3 p3; EXPECT_TRUE(ge_frombytes_vartime(&p3, point.bytes) == 0); return p3; } TEST(multiexp, bos_coster_empty) { std::vector data; data.push_back({rct::zero(), get_p3(rct::identity())}); ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data)); } TEST(multiexp, straus_empty) { std::vector data; data.push_back({rct::zero(), get_p3(rct::identity())}); ASSERT_TRUE(basic(data) == straus(data)); } TEST(multiexp, pippenger_empty) { std::vector data; data.push_back({rct::zero(), get_p3(rct::identity())}); ASSERT_TRUE(basic(data) == pippenger(data)); } TEST(multiexp, bos_coster_zero_and_non_zero) { std::vector data; data.push_back({rct::zero(), get_p3(TESTPOINT)}); data.push_back({TESTSCALAR, get_p3(TESTPOINT)}); ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data)); } TEST(multiexp, straus_zero_and_non_zero) { std::vector data; data.push_back({rct::zero(), get_p3(TESTPOINT)}); data.push_back({TESTSCALAR, get_p3(TESTPOINT)}); ASSERT_TRUE(basic(data) == straus(data)); } TEST(multiexp, pippenger_zero_and_non_zero) { std::vector data; data.push_back({rct::zero(), get_p3(TESTPOINT)}); data.push_back({TESTSCALAR, get_p3(TESTPOINT)}); ASSERT_TRUE(basic(data) == pippenger(data)); } TEST(multiexp, bos_coster_pow2_scalar) { std::vector data; data.push_back({TESTPOW2SCALAR, get_p3(TESTPOINT)}); data.push_back({TESTSMALLSCALAR, get_p3(TESTPOINT)}); ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data)); } TEST(multiexp, straus_pow2_scalar) { std::vector data; data.push_back({TESTPOW2SCALAR, get_p3(TESTPOINT)}); data.push_back({TESTSMALLSCALAR, get_p3(TESTPOINT)}); ASSERT_TRUE(basic(data) == straus(data)); } TEST(multiexp, pippenger_pow2_scalar) { std::vector data; data.push_back({TESTPOW2SCALAR, get_p3(TESTPOINT)}); data.push_back({TESTSMALLSCALAR, get_p3(TESTPOINT)}); ASSERT_TRUE(basic(data) == pippenger(data)); } TEST(multiexp, bos_coster_only_zeroes) { std::vector data; for (int n = 0; n < 16; ++n) data.push_back({rct::zero(), get_p3(TESTPOINT)}); ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data)); } TEST(multiexp, straus_only_zeroes) { std::vector data; for (int n = 0; n < 16; ++n) data.push_back({rct::zero(), get_p3(TESTPOINT)}); ASSERT_TRUE(basic(data) == straus(data)); } TEST(multiexp, pippenger_only_zeroes) { std::vector data; for (int n = 0; n < 16; ++n) data.push_back({rct::zero(), get_p3(TESTPOINT)}); ASSERT_TRUE(basic(data) == pippenger(data)); } TEST(multiexp, bos_coster_only_identities) { std::vector data; for (int n = 0; n < 16; ++n) data.push_back({TESTSCALAR, get_p3(rct::identity())}); ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data)); } TEST(multiexp, straus_only_identities) { std::vector data; for (int n = 0; n < 16; ++n) data.push_back({TESTSCALAR, get_p3(rct::identity())}); ASSERT_TRUE(basic(data) == straus(data)); } TEST(multiexp, pippenger_only_identities) { std::vector data; for (int n = 0; n < 16; ++n) data.push_back({TESTSCALAR, get_p3(rct::identity())}); ASSERT_TRUE(basic(data) == pippenger(data)); } TEST(multiexp, bos_coster_random) { std::vector data; for (int n = 0; n < 32; ++n) { data.push_back({rct::skGen(), get_p3(rct::scalarmultBase(rct::skGen()))}); ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data)); } } TEST(multiexp, straus_random) { std::vector data; for (int n = 0; n < 32; ++n) { data.push_back({rct::skGen(), get_p3(rct::scalarmultBase(rct::skGen()))}); ASSERT_TRUE(basic(data) == straus(data)); } } TEST(multiexp, pippenger_random) { std::vector data; for (int n = 0; n < 32; ++n) { data.push_back({rct::skGen(), get_p3(rct::scalarmultBase(rct::skGen()))}); ASSERT_TRUE(basic(data) == pippenger(data)); } } TEST(multiexp, straus_cached) { static constexpr size_t N = 256; std::vector P(N); for (size_t n = 0; n < N; ++n) { P[n].scalar = rct::zero(); ASSERT_TRUE(ge_frombytes_vartime(&P[n].point, rct::scalarmultBase(rct::skGen()).bytes) == 0); } std::shared_ptr cache = rct::straus_init_cache(P); for (size_t n = 0; n < N/16; ++n) { std::vector data; size_t sz = 1 + crypto::rand() % (N-1); for (size_t s = 0; s < sz; ++s) { data.push_back({rct::skGen(), P[s].point}); } ASSERT_TRUE(basic(data) == straus(data, cache)); } } TEST(multiexp, pippenger_cached) { static constexpr size_t N = 256; std::vector P(N); for (size_t n = 0; n < N; ++n) { P[n].scalar = rct::zero(); ASSERT_TRUE(ge_frombytes_vartime(&P[n].point, rct::scalarmultBase(rct::skGen()).bytes) == 0); } std::shared_ptr cache = rct::pippenger_init_cache(P); for (size_t n = 0; n < N/16; ++n) { std::vector data; size_t sz = 1 + crypto::rand() % (N-1); for (size_t s = 0; s < sz; ++s) { data.push_back({rct::skGen(), P[s].point}); } ASSERT_TRUE(basic(data) == pippenger(data, cache)); } } TEST(multiexp, scalarmult_triple) { std::vector data; ge_p2 p2; rct::key res; ge_p3 Gp3; ASSERT_EQ(ge_frombytes_vartime(&Gp3, rct::G.bytes), 0); static const rct::key scalars[] = { rct::Z, rct::I, rct::L, rct::EIGHT, rct::INV_EIGHT, }; static const ge_p3 points[] = { ge_p3_identity, ge_p3_H, Gp3, }; ge_dsmp ppre[sizeof(points) / sizeof(points[0])]; for (size_t i = 0; i < sizeof(points) / sizeof(points[0]); ++i) ge_dsm_precomp(ppre[i], &points[i]); data.resize(3); for (const rct::key &x: scalars) { data[0].scalar = x; for (const rct::key &y: scalars) { data[1].scalar = y; for (const rct::key &z: scalars) { data[2].scalar = z; for (size_t i = 0; i < sizeof(points) / sizeof(points[0]); ++i) { data[1].point = points[i]; for (size_t j = 0; j < sizeof(points) / sizeof(points[0]); ++j) { data[0].point = Gp3; data[2].point = points[j]; ge_triple_scalarmult_base_vartime(&p2, data[0].scalar.bytes, data[1].scalar.bytes, ppre[i], data[2].scalar.bytes, ppre[j]); ge_tobytes(res.bytes, &p2); ASSERT_TRUE(basic(data) == res); for (size_t k = 0; k < sizeof(points) / sizeof(points[0]); ++k) { data[0].point = points[k]; ge_triple_scalarmult_precomp_vartime(&p2, data[0].scalar.bytes, ppre[k], data[1].scalar.bytes, ppre[i], data[2].scalar.bytes, ppre[j]); ge_tobytes(res.bytes, &p2); ASSERT_TRUE(basic(data) == res); } } } } } } }