// Copyright (c) 2014-2020, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include #include #include "wipeable_string.h" #include "string_tools.h" #include "serialization/string.h" #include "cryptonote_format_utils.h" #include "cryptonote_config.h" #include "crypto/crypto.h" #include "crypto/hash.h" #include "ringct/rctSigs.h" using namespace epee; #undef MONERO_DEFAULT_LOG_CATEGORY #define MONERO_DEFAULT_LOG_CATEGORY "cn" // #define ENABLE_HASH_CASH_INTEGRITY_CHECK using namespace crypto; static const uint64_t valid_decomposed_outputs[] = { (uint64_t)1, (uint64_t)2, (uint64_t)3, (uint64_t)4, (uint64_t)5, (uint64_t)6, (uint64_t)7, (uint64_t)8, (uint64_t)9, // 1 piconero (uint64_t)10, (uint64_t)20, (uint64_t)30, (uint64_t)40, (uint64_t)50, (uint64_t)60, (uint64_t)70, (uint64_t)80, (uint64_t)90, (uint64_t)100, (uint64_t)200, (uint64_t)300, (uint64_t)400, (uint64_t)500, (uint64_t)600, (uint64_t)700, (uint64_t)800, (uint64_t)900, (uint64_t)1000, (uint64_t)2000, (uint64_t)3000, (uint64_t)4000, (uint64_t)5000, (uint64_t)6000, (uint64_t)7000, (uint64_t)8000, (uint64_t)9000, (uint64_t)10000, (uint64_t)20000, (uint64_t)30000, (uint64_t)40000, (uint64_t)50000, (uint64_t)60000, (uint64_t)70000, (uint64_t)80000, (uint64_t)90000, (uint64_t)100000, (uint64_t)200000, (uint64_t)300000, (uint64_t)400000, (uint64_t)500000, (uint64_t)600000, (uint64_t)700000, (uint64_t)800000, (uint64_t)900000, (uint64_t)1000000, (uint64_t)2000000, (uint64_t)3000000, (uint64_t)4000000, (uint64_t)5000000, (uint64_t)6000000, (uint64_t)7000000, (uint64_t)8000000, (uint64_t)9000000, // 1 micronero (uint64_t)10000000, (uint64_t)20000000, (uint64_t)30000000, (uint64_t)40000000, (uint64_t)50000000, (uint64_t)60000000, (uint64_t)70000000, (uint64_t)80000000, (uint64_t)90000000, (uint64_t)100000000, (uint64_t)200000000, (uint64_t)300000000, (uint64_t)400000000, (uint64_t)500000000, (uint64_t)600000000, (uint64_t)700000000, (uint64_t)800000000, (uint64_t)900000000, (uint64_t)1000000000, (uint64_t)2000000000, (uint64_t)3000000000, (uint64_t)4000000000, (uint64_t)5000000000, (uint64_t)6000000000, (uint64_t)7000000000, (uint64_t)8000000000, (uint64_t)9000000000, (uint64_t)10000000000, (uint64_t)20000000000, (uint64_t)30000000000, (uint64_t)40000000000, (uint64_t)50000000000, (uint64_t)60000000000, (uint64_t)70000000000, (uint64_t)80000000000, (uint64_t)90000000000, (uint64_t)100000000000, (uint64_t)200000000000, (uint64_t)300000000000, (uint64_t)400000000000, (uint64_t)500000000000, (uint64_t)600000000000, (uint64_t)700000000000, (uint64_t)800000000000, (uint64_t)900000000000, (uint64_t)1000000000000, (uint64_t)2000000000000, (uint64_t)3000000000000, (uint64_t)4000000000000, (uint64_t)5000000000000, (uint64_t)6000000000000, (uint64_t)7000000000000, (uint64_t)8000000000000, (uint64_t)9000000000000, // 1 monero (uint64_t)10000000000000, (uint64_t)20000000000000, (uint64_t)30000000000000, (uint64_t)40000000000000, (uint64_t)50000000000000, (uint64_t)60000000000000, (uint64_t)70000000000000, (uint64_t)80000000000000, (uint64_t)90000000000000, (uint64_t)100000000000000, (uint64_t)200000000000000, (uint64_t)300000000000000, (uint64_t)400000000000000, (uint64_t)500000000000000, (uint64_t)600000000000000, (uint64_t)700000000000000, (uint64_t)800000000000000, (uint64_t)900000000000000, (uint64_t)1000000000000000, (uint64_t)2000000000000000, (uint64_t)3000000000000000, (uint64_t)4000000000000000, (uint64_t)5000000000000000, (uint64_t)6000000000000000, (uint64_t)7000000000000000, (uint64_t)8000000000000000, (uint64_t)9000000000000000, (uint64_t)10000000000000000, (uint64_t)20000000000000000, (uint64_t)30000000000000000, (uint64_t)40000000000000000, (uint64_t)50000000000000000, (uint64_t)60000000000000000, (uint64_t)70000000000000000, (uint64_t)80000000000000000, (uint64_t)90000000000000000, (uint64_t)100000000000000000, (uint64_t)200000000000000000, (uint64_t)300000000000000000, (uint64_t)400000000000000000, (uint64_t)500000000000000000, (uint64_t)600000000000000000, (uint64_t)700000000000000000, (uint64_t)800000000000000000, (uint64_t)900000000000000000, (uint64_t)1000000000000000000, (uint64_t)2000000000000000000, (uint64_t)3000000000000000000, (uint64_t)4000000000000000000, (uint64_t)5000000000000000000, (uint64_t)6000000000000000000, (uint64_t)7000000000000000000, (uint64_t)8000000000000000000, (uint64_t)9000000000000000000, // 1 meganero (uint64_t)10000000000000000000ull }; static std::atomic default_decimal_point(CRYPTONOTE_DISPLAY_DECIMAL_POINT); static std::atomic tx_hashes_calculated_count(0); static std::atomic tx_hashes_cached_count(0); static std::atomic block_hashes_calculated_count(0); static std::atomic block_hashes_cached_count(0); #define CHECK_AND_ASSERT_THROW_MES_L1(expr, message) {if(!(expr)) {MWARNING(message); throw std::runtime_error(message);}} namespace cryptonote { static inline unsigned char *operator &(ec_point &point) { return &reinterpret_cast(point); } static inline const unsigned char *operator &(const ec_point &point) { return &reinterpret_cast(point); } // a copy of rct::addKeys, since we can't link to libringct to avoid circular dependencies static void add_public_key(crypto::public_key &AB, const crypto::public_key &A, const crypto::public_key &B) { ge_p3 B2, A2; CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&B2, &B) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast(__LINE__)); CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A2, &A) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast(__LINE__)); ge_cached tmp2; ge_p3_to_cached(&tmp2, &B2); ge_p1p1 tmp3; ge_add(&tmp3, &A2, &tmp2); ge_p1p1_to_p3(&A2, &tmp3); ge_p3_tobytes(&AB, &A2); } uint64_t get_transaction_weight_clawback(const transaction &tx, size_t n_padded_outputs) { const rct::rctSig &rv = tx.rct_signatures; const bool plus = rv.type == rct::RCTTypeBulletproofPlus; const uint64_t bp_base = (32 * ((plus ? 6 : 9) + 7 * 2)) / 2; // notional size of a 2 output proof, normalized to 1 proof (ie, divided by 2) const size_t n_outputs = tx.vout.size(); if (n_padded_outputs <= 2) return 0; size_t nlr = 0; while ((1u << nlr) < n_padded_outputs) ++nlr; nlr += 6; const size_t bp_size = 32 * ((plus ? 6 : 9) + 2 * nlr); CHECK_AND_ASSERT_THROW_MES_L1(n_outputs <= BULLETPROOF_MAX_OUTPUTS, "maximum number of outputs is " + std::to_string(BULLETPROOF_MAX_OUTPUTS) + " per transaction"); CHECK_AND_ASSERT_THROW_MES_L1(bp_base * n_padded_outputs >= bp_size, "Invalid bulletproof clawback: bp_base " + std::to_string(bp_base) + ", n_padded_outputs " + std::to_string(n_padded_outputs) + ", bp_size " + std::to_string(bp_size)); const uint64_t bp_clawback = (bp_base * n_padded_outputs - bp_size) * 4 / 5; return bp_clawback; } //--------------------------------------------------------------- } namespace cryptonote { //--------------------------------------------------------------- void get_transaction_prefix_hash(const transaction_prefix& tx, crypto::hash& h, hw::device &hwdev) { hwdev.get_transaction_prefix_hash(tx,h); } //--------------------------------------------------------------- crypto::hash get_transaction_prefix_hash(const transaction_prefix& tx, hw::device &hwdev) { crypto::hash h = null_hash; get_transaction_prefix_hash(tx, h, hwdev); return h; } bool expand_transaction_1(transaction &tx, bool base_only) { if (tx.version >= 2 && !is_coinbase(tx)) { rct::rctSig &rv = tx.rct_signatures; if (rv.type == rct::RCTTypeNull) return true; if (rv.outPk.size() != tx.vout.size()) { LOG_PRINT_L1("Failed to parse transaction from blob, bad outPk size in tx " << get_transaction_hash(tx)); return false; } for (size_t n = 0; n < tx.rct_signatures.outPk.size(); ++n) { if (tx.vout[n].target.type() != typeid(txout_to_key)) { LOG_PRINT_L1("Unsupported output type in tx " << get_transaction_hash(tx)); return false; } rv.outPk[n].dest = rct::pk2rct(boost::get(tx.vout[n].target).key); } if (!base_only) { const bool bulletproof_plus = rct::is_rct_bulletproof_plus(rv.type); if (bulletproof_plus) { if (rv.p.bulletproofs_plus.size() != 1) { LOG_PRINT_L1("Failed to parse transaction from blob, bad bulletproofs_plus size in tx " << get_transaction_hash(tx)); return false; } if (rv.p.bulletproofs_plus[0].L.size() < 6) { LOG_PRINT_L1("Failed to parse transaction from blob, bad bulletproofs_plus L size in tx " << get_transaction_hash(tx)); return false; } const size_t max_outputs = 1 << (rv.p.bulletproofs_plus[0].L.size() - 6); if (max_outputs < tx.vout.size()) { LOG_PRINT_L1("Failed to parse transaction from blob, bad bulletproofs_plus max outputs in tx " << get_transaction_hash(tx)); return false; } const size_t n_amounts = tx.vout.size(); CHECK_AND_ASSERT_MES(n_amounts == rv.outPk.size(), false, "Internal error filling out V"); rv.p.bulletproofs_plus[0].V.resize(n_amounts); for (size_t i = 0; i < n_amounts; ++i) rv.p.bulletproofs_plus[0].V[i] = rv.outPk[i].mask; } const bool bulletproof = rct::is_rct_bulletproof(rv.type); if (rct::is_rct_new_bulletproof(rv.type)) { if (rv.p.bulletproofs.size() != 1) { LOG_PRINT_L1("Failed to parse transaction from blob, bad bulletproofs size in tx " << get_transaction_hash(tx)); return false; } if (rv.p.bulletproofs[0].L.size() < 6) { LOG_PRINT_L1("Failed to parse transaction from blob, bad bulletproofs L size in tx " << get_transaction_hash(tx)); return false; } const size_t max_outputs = 1 << (rv.p.bulletproofs[0].L.size() - 6); if (max_outputs < tx.vout.size() && rv.type == rct::RCTTypeBulletproof) { LOG_PRINT_L1("Failed to parse transaction from blob, bad bulletproofs max outputs in tx " << get_transaction_hash(tx)); return false; } const size_t n_amounts = tx.vout.size(); CHECK_AND_ASSERT_MES(n_amounts == rv.outPk.size(), false, "Internal error filling out V"); rv.p.bulletproofs[0].V.resize(n_amounts); for (size_t i = 0; i < n_amounts; ++i) rv.p.bulletproofs[0].V[i] = rct::scalarmultKey(rv.outPk[i].mask, rct::INV_EIGHT); } else if (bulletproof) { if (rct::n_bulletproof_v1_amounts(rv.p.bulletproofs) != tx.vout.size()) { LOG_PRINT_L1("Failed to parse transaction from blob, bad bulletproofs size in tx " << get_transaction_hash(tx)); return false; } size_t idx = 0; for (size_t n = 0; n < rv.outPk.size(); ++n) { //rv.p.bulletproofs[n].V.resize(1); //rv.p.bulletproofs[n].V[0] = rv.outPk[n].mask; CHECK_AND_ASSERT_MES(rv.p.bulletproofs[n].L.size() >= 6, false, "Bad bulletproofs L size"); // at least 64 bits const size_t n_amounts = rct::n_bulletproof_v1_amounts(rv.p.bulletproofs[n]); CHECK_AND_ASSERT_MES(idx + n_amounts <= rv.outPk.size(), false, "Internal error filling out V"); rv.p.bulletproofs[n].V.resize(n_amounts); for (size_t i = 0; i < n_amounts; ++i) rv.p.bulletproofs[n].V[i] = rv.outPk[idx++].mask; } } } } return true; } //--------------------------------------------------------------- bool parse_and_validate_tx_from_blob(const blobdata_ref& tx_blob, transaction& tx) { std::stringstream ss; ss << tx_blob; binary_archive ba(ss); bool r = ::serialization::serialize(ba, tx); CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction from blob"); CHECK_AND_ASSERT_MES(expand_transaction_1(tx, false), false, "Failed to expand transaction data"); tx.invalidate_hashes(); tx.set_blob_size(tx_blob.size()); return true; } //--------------------------------------------------------------- bool parse_and_validate_tx_base_from_blob(const blobdata_ref& tx_blob, transaction& tx) { std::stringstream ss; ss << tx_blob; binary_archive ba(ss); bool r = tx.serialize_base(ba); CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction from blob"); CHECK_AND_ASSERT_MES(expand_transaction_1(tx, true), false, "Failed to expand transaction data"); tx.invalidate_hashes(); return true; } //--------------------------------------------------------------- bool parse_and_validate_tx_prefix_from_blob(const blobdata_ref& tx_blob, transaction_prefix& tx) { std::stringstream ss; ss << tx_blob; binary_archive ba(ss); bool r = ::serialization::serialize_noeof(ba, tx); CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction prefix from blob"); return true; } //--------------------------------------------------------------- bool parse_and_validate_tx_from_blob(const blobdata_ref& tx_blob, transaction& tx, crypto::hash& tx_hash) { std::stringstream ss; ss << tx_blob; binary_archive ba(ss); bool r = ::serialization::serialize(ba, tx); CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction from blob"); CHECK_AND_ASSERT_MES(expand_transaction_1(tx, false), false, "Failed to expand transaction data"); tx.invalidate_hashes(); //TODO: validate tx return get_transaction_hash(tx, tx_hash); } //--------------------------------------------------------------- bool parse_and_validate_tx_from_blob(const blobdata_ref& tx_blob, transaction& tx, crypto::hash& tx_hash, crypto::hash& tx_prefix_hash) { if (!parse_and_validate_tx_from_blob(tx_blob, tx, tx_hash)) return false; get_transaction_prefix_hash(tx, tx_prefix_hash); return true; } //--------------------------------------------------------------- bool is_v1_tx(const blobdata_ref& tx_blob) { uint64_t version; const char* begin = static_cast(tx_blob.data()); const char* end = begin + tx_blob.size(); int read = tools::read_varint(begin, end, version); if (read <= 0) throw std::runtime_error("Internal error getting transaction version"); return version <= 1; } //--------------------------------------------------------------- bool is_v1_tx(const blobdata& tx_blob) { return is_v1_tx(blobdata_ref{tx_blob.data(), tx_blob.size()}); } //--------------------------------------------------------------- bool generate_key_image_helper(const account_keys& ack, const std::unordered_map& subaddresses, const crypto::public_key& out_key, const crypto::public_key& tx_public_key, const std::vector& additional_tx_public_keys, size_t real_output_index, keypair& in_ephemeral, crypto::key_image& ki, hw::device &hwdev) { crypto::key_derivation recv_derivation = AUTO_VAL_INIT(recv_derivation); bool r = hwdev.generate_key_derivation(tx_public_key, ack.m_view_secret_key, recv_derivation); if (!r) { MWARNING("key image helper: failed to generate_key_derivation(" << tx_public_key << ", " << ack.m_view_secret_key << ")"); memcpy(&recv_derivation, rct::identity().bytes, sizeof(recv_derivation)); } std::vector additional_recv_derivations; for (size_t i = 0; i < additional_tx_public_keys.size(); ++i) { crypto::key_derivation additional_recv_derivation = AUTO_VAL_INIT(additional_recv_derivation); r = hwdev.generate_key_derivation(additional_tx_public_keys[i], ack.m_view_secret_key, additional_recv_derivation); if (!r) { MWARNING("key image helper: failed to generate_key_derivation(" << additional_tx_public_keys[i] << ", " << ack.m_view_secret_key << ")"); } else { additional_recv_derivations.push_back(additional_recv_derivation); } } boost::optional subaddr_recv_info = is_out_to_acc_precomp(subaddresses, out_key, recv_derivation, additional_recv_derivations, real_output_index,hwdev); CHECK_AND_ASSERT_MES(subaddr_recv_info, false, "key image helper: given output pubkey doesn't seem to belong to this address"); return generate_key_image_helper_precomp(ack, out_key, subaddr_recv_info->derivation, real_output_index, subaddr_recv_info->index, in_ephemeral, ki, hwdev); } //--------------------------------------------------------------- bool generate_key_image_helper_precomp(const account_keys& ack, const crypto::public_key& out_key, const crypto::key_derivation& recv_derivation, size_t real_output_index, const subaddress_index& received_index, keypair& in_ephemeral, crypto::key_image& ki, hw::device &hwdev) { if (hwdev.compute_key_image(ack, out_key, recv_derivation, real_output_index, received_index, in_ephemeral, ki)) { return true; } if (ack.m_spend_secret_key == crypto::null_skey) { // for watch-only wallet, simply copy the known output pubkey in_ephemeral.pub = out_key; in_ephemeral.sec = crypto::null_skey; } else { // derive secret key with subaddress - step 1: original CN derivation crypto::secret_key scalar_step1; hwdev.derive_secret_key(recv_derivation, real_output_index, ack.m_spend_secret_key, scalar_step1); // computes Hs(a*R || idx) + b // step 2: add Hs(a || index_major || index_minor) crypto::secret_key subaddr_sk; crypto::secret_key scalar_step2; if (received_index.is_zero()) { scalar_step2 = scalar_step1; // treat index=(0,0) as a special case representing the main address } else { subaddr_sk = hwdev.get_subaddress_secret_key(ack.m_view_secret_key, received_index); hwdev.sc_secret_add(scalar_step2, scalar_step1,subaddr_sk); } in_ephemeral.sec = scalar_step2; if (ack.m_multisig_keys.empty()) { // when not in multisig, we know the full spend secret key, so the output pubkey can be obtained by scalarmultBase CHECK_AND_ASSERT_MES(hwdev.secret_key_to_public_key(in_ephemeral.sec, in_ephemeral.pub), false, "Failed to derive public key"); } else { // when in multisig, we only know the partial spend secret key. but we do know the full spend public key, so the output pubkey can be obtained by using the standard CN key derivation CHECK_AND_ASSERT_MES(hwdev.derive_public_key(recv_derivation, real_output_index, ack.m_account_address.m_spend_public_key, in_ephemeral.pub), false, "Failed to derive public key"); // and don't forget to add the contribution from the subaddress part if (!received_index.is_zero()) { crypto::public_key subaddr_pk; CHECK_AND_ASSERT_MES(hwdev.secret_key_to_public_key(subaddr_sk, subaddr_pk), false, "Failed to derive public key"); add_public_key(in_ephemeral.pub, in_ephemeral.pub, subaddr_pk); } } CHECK_AND_ASSERT_MES(in_ephemeral.pub == out_key, false, "key image helper precomp: given output pubkey doesn't match the derived one"); } hwdev.generate_key_image(in_ephemeral.pub, in_ephemeral.sec, ki); return true; } //--------------------------------------------------------------- uint64_t power_integral(uint64_t a, uint64_t b) { if(b == 0) return 1; uint64_t total = a; for(uint64_t i = 1; i != b; i++) total *= a; return total; } //--------------------------------------------------------------- bool parse_amount(uint64_t& amount, const std::string& str_amount_) { std::string str_amount = str_amount_; boost::algorithm::trim(str_amount); size_t point_index = str_amount.find_first_of('.'); size_t fraction_size; if (std::string::npos != point_index) { fraction_size = str_amount.size() - point_index - 1; while (default_decimal_point < fraction_size && '0' == str_amount.back()) { str_amount.erase(str_amount.size() - 1, 1); --fraction_size; } if (default_decimal_point < fraction_size) return false; str_amount.erase(point_index, 1); } else { fraction_size = 0; } if (str_amount.empty()) return false; if (fraction_size < default_decimal_point) { str_amount.append(default_decimal_point - fraction_size, '0'); } return string_tools::get_xtype_from_string(amount, str_amount); } //--------------------------------------------------------------- uint64_t get_transaction_weight(const transaction &tx, size_t blob_size) { CHECK_AND_ASSERT_MES(!tx.pruned, std::numeric_limits::max(), "get_transaction_weight does not support pruned txes"); if (tx.version < 2) return blob_size; const rct::rctSig &rv = tx.rct_signatures; const bool bulletproof = rct::is_rct_bulletproof(rv.type); const bool bulletproof_plus = rct::is_rct_bulletproof_plus(rv.type); if (!bulletproof && !bulletproof_plus) return blob_size; const size_t n_outputs = tx.vout.size(); if (n_outputs <= 2) return blob_size; if (rct::is_rct_old_bulletproof(rv.type)) return blob_size; const uint64_t bp_base = 368; const size_t n_padded_outputs = bulletproof_plus ? rct::n_bulletproof_plus_max_amounts(rv.p.bulletproofs_plus) : rct::n_bulletproof_max_amounts(rv.p.bulletproofs); uint64_t bp_clawback = get_transaction_weight_clawback(tx, n_padded_outputs); CHECK_AND_ASSERT_THROW_MES_L1(bp_clawback <= std::numeric_limits::max() - blob_size, "Weight overflow"); return blob_size + bp_clawback; } //--------------------------------------------------------------- uint64_t get_pruned_transaction_weight(const transaction &tx) { CHECK_AND_ASSERT_MES(tx.pruned, std::numeric_limits::max(), "get_pruned_transaction_weight does not support non pruned txes"); CHECK_AND_ASSERT_MES(tx.version >= 2, std::numeric_limits::max(), "get_pruned_transaction_weight does not support v1 txes"); CHECK_AND_ASSERT_MES(tx.rct_signatures.type == rct::RCTTypeBulletproof2 || tx.rct_signatures.type == rct::RCTTypeCLSAG || tx.rct_signatures.type == rct::RCTTypeBulletproofPlus, std::numeric_limits::max(), "get_pruned_transaction_weight does not support older range proof types"); CHECK_AND_ASSERT_MES(!tx.vin.empty(), std::numeric_limits::max(), "empty vin"); CHECK_AND_ASSERT_MES(tx.vin[0].type() == typeid(cryptonote::txin_to_key), std::numeric_limits::max(), "empty vin"); // get pruned data size std::ostringstream s; binary_archive a(s); ::serialization::serialize(a, const_cast(tx)); uint64_t weight = s.str().size(), extra; // nbps (technically varint) weight += 1; // calculate deterministic bulletproofs size (assumes canonical BP format) size_t nrl = 0, n_padded_outputs; while ((n_padded_outputs = (1u << nrl)) < tx.vout.size()) ++nrl; nrl += 6; extra = 32 * ((rct::is_rct_bulletproof_plus(tx.rct_signatures.type) ? 6 : 9) + 2 * nrl) + 2; weight += extra; // calculate deterministic CLSAG/MLSAG data size const size_t ring_size = boost::get(tx.vin[0]).key_offsets.size(); if (tx.rct_signatures.type == rct::RCTTypeCLSAG || tx.rct_signatures.type == rct::RCTTypeBulletproofPlus) extra = tx.vin.size() * (ring_size + 2) * 32; else extra = tx.vin.size() * (ring_size * (1 + 1) * 32 + 32 /* cc */); weight += extra; // calculate deterministic pseudoOuts size extra = 32 * (tx.vin.size()); weight += extra; // clawback uint64_t bp_clawback = get_transaction_weight_clawback(tx, n_padded_outputs); CHECK_AND_ASSERT_THROW_MES_L1(bp_clawback <= std::numeric_limits::max() - weight, "Weight overflow"); weight += bp_clawback; return weight; } //--------------------------------------------------------------- uint64_t get_transaction_weight(const transaction &tx) { size_t blob_size; if (tx.is_blob_size_valid()) { blob_size = tx.blob_size; } else { std::ostringstream s; binary_archive a(s); ::serialization::serialize(a, const_cast(tx)); blob_size = s.str().size(); } return get_transaction_weight(tx, blob_size); } //--------------------------------------------------------------- bool get_tx_fee(const transaction& tx, uint64_t & fee) { if (tx.version > 1) { fee = tx.rct_signatures.txnFee; return true; } uint64_t amount_in = 0; uint64_t amount_out = 0; for(auto& in: tx.vin) { CHECK_AND_ASSERT_MES(in.type() == typeid(txin_to_key), 0, "unexpected type id in transaction"); amount_in += boost::get(in).amount; } for(auto& o: tx.vout) amount_out += o.amount; CHECK_AND_ASSERT_MES(amount_in >= amount_out, false, "transaction spend (" <& tx_extra, std::vector& tx_extra_fields) { tx_extra_fields.clear(); if(tx_extra.empty()) return true; std::string extra_str(reinterpret_cast(tx_extra.data()), tx_extra.size()); std::istringstream iss(extra_str); binary_archive ar(iss); bool eof = false; while (!eof) { tx_extra_field field; bool r = ::do_serialize(ar, field); CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast(tx_extra.data()), tx_extra.size()))); tx_extra_fields.push_back(field); std::ios_base::iostate state = iss.rdstate(); eof = (EOF == iss.peek()); iss.clear(state); } CHECK_AND_NO_ASSERT_MES_L1(::serialization::check_stream_state(ar), false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast(tx_extra.data()), tx_extra.size()))); return true; } //--------------------------------------------------------------- template static bool pick(binary_archive &ar, std::vector &fields, uint8_t tag) { std::vector::iterator it; while ((it = std::find_if(fields.begin(), fields.end(), [](const tx_extra_field &f) { return f.type() == typeid(T); })) != fields.end()) { bool r = ::do_serialize(ar, tag); CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to serialize tx extra field"); r = ::do_serialize(ar, boost::get(*it)); CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to serialize tx extra field"); fields.erase(it); } return true; } //--------------------------------------------------------------- bool sort_tx_extra(const std::vector& tx_extra, std::vector &sorted_tx_extra, bool allow_partial) { std::vector tx_extra_fields; if(tx_extra.empty()) { sorted_tx_extra.clear(); return true; } std::string extra_str(reinterpret_cast(tx_extra.data()), tx_extra.size()); std::istringstream iss(extra_str); binary_archive ar(iss); bool eof = false; size_t processed = 0; while (!eof) { tx_extra_field field; bool r = ::do_serialize(ar, field); if (!r) { MWARNING("failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast(tx_extra.data()), tx_extra.size()))); if (!allow_partial) return false; break; } tx_extra_fields.push_back(field); processed = iss.tellg(); std::ios_base::iostate state = iss.rdstate(); eof = (EOF == iss.peek()); iss.clear(state); } if (!::serialization::check_stream_state(ar)) { MWARNING("failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast(tx_extra.data()), tx_extra.size()))); if (!allow_partial) return false; } MTRACE("Sorted " << processed << "/" << tx_extra.size()); std::ostringstream oss; binary_archive nar(oss); // sort by: if (!pick(nar, tx_extra_fields, TX_EXTRA_TAG_PUBKEY)) return false; if (!pick(nar, tx_extra_fields, TX_EXTRA_TAG_ADDITIONAL_PUBKEYS)) return false; if (!pick(nar, tx_extra_fields, TX_EXTRA_NONCE)) return false; if (!pick(nar, tx_extra_fields, TX_EXTRA_MERGE_MINING_TAG)) return false; if (!pick(nar, tx_extra_fields, TX_EXTRA_MYSTERIOUS_MINERGATE_TAG)) return false; if (!pick(nar, tx_extra_fields, TX_EXTRA_TAG_PADDING)) return false; // if not empty, someone added a new type and did not add a case above if (!tx_extra_fields.empty()) { MERROR("tx_extra_fields not empty after sorting, someone forgot to add a case above"); return false; } std::string oss_str = oss.str(); if (allow_partial && processed < tx_extra.size()) { MDEBUG("Appending unparsed data"); oss_str += std::string((const char*)tx_extra.data() + processed, tx_extra.size() - processed); } sorted_tx_extra = std::vector(oss_str.begin(), oss_str.end()); return true; } //--------------------------------------------------------------- crypto::public_key get_tx_pub_key_from_extra(const std::vector& tx_extra, size_t pk_index) { std::vector tx_extra_fields; parse_tx_extra(tx_extra, tx_extra_fields); tx_extra_pub_key pub_key_field; if(!find_tx_extra_field_by_type(tx_extra_fields, pub_key_field, pk_index)) return null_pkey; return pub_key_field.pub_key; } //--------------------------------------------------------------- crypto::public_key get_tx_pub_key_from_extra(const transaction_prefix& tx_prefix, size_t pk_index) { return get_tx_pub_key_from_extra(tx_prefix.extra, pk_index); } //--------------------------------------------------------------- crypto::public_key get_tx_pub_key_from_extra(const transaction& tx, size_t pk_index) { return get_tx_pub_key_from_extra(tx.extra, pk_index); } //--------------------------------------------------------------- bool add_tx_pub_key_to_extra(transaction& tx, const crypto::public_key& tx_pub_key) { return add_tx_pub_key_to_extra(tx.extra, tx_pub_key); } //--------------------------------------------------------------- bool add_tx_pub_key_to_extra(transaction_prefix& tx, const crypto::public_key& tx_pub_key) { return add_tx_pub_key_to_extra(tx.extra, tx_pub_key); } //--------------------------------------------------------------- bool add_tx_pub_key_to_extra(std::vector& tx_extra, const crypto::public_key& tx_pub_key) { tx_extra.resize(tx_extra.size() + 1 + sizeof(crypto::public_key)); tx_extra[tx_extra.size() - 1 - sizeof(crypto::public_key)] = TX_EXTRA_TAG_PUBKEY; *reinterpret_cast(&tx_extra[tx_extra.size() - sizeof(crypto::public_key)]) = tx_pub_key; return true; } //--------------------------------------------------------------- std::vector get_additional_tx_pub_keys_from_extra(const std::vector& tx_extra) { // parse std::vector tx_extra_fields; parse_tx_extra(tx_extra, tx_extra_fields); // find corresponding field tx_extra_additional_pub_keys additional_pub_keys; if(!find_tx_extra_field_by_type(tx_extra_fields, additional_pub_keys)) return {}; return additional_pub_keys.data; } //--------------------------------------------------------------- std::vector get_additional_tx_pub_keys_from_extra(const transaction_prefix& tx) { return get_additional_tx_pub_keys_from_extra(tx.extra); } //--------------------------------------------------------------- bool add_additional_tx_pub_keys_to_extra(std::vector& tx_extra, const std::vector& additional_pub_keys) { // convert to variant tx_extra_field field = tx_extra_additional_pub_keys{ additional_pub_keys }; // serialize std::ostringstream oss; binary_archive ar(oss); bool r = ::do_serialize(ar, field); CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to serialize tx extra additional tx pub keys"); // append std::string tx_extra_str = oss.str(); size_t pos = tx_extra.size(); tx_extra.resize(tx_extra.size() + tx_extra_str.size()); memcpy(&tx_extra[pos], tx_extra_str.data(), tx_extra_str.size()); return true; } //--------------------------------------------------------------- bool add_extra_nonce_to_tx_extra(std::vector& tx_extra, const blobdata& extra_nonce) { CHECK_AND_ASSERT_MES(extra_nonce.size() <= TX_EXTRA_NONCE_MAX_COUNT, false, "extra nonce could be 255 bytes max"); size_t start_pos = tx_extra.size(); tx_extra.resize(tx_extra.size() + 2 + extra_nonce.size()); //write tag tx_extra[start_pos] = TX_EXTRA_NONCE; //write len ++start_pos; tx_extra[start_pos] = static_cast(extra_nonce.size()); //write data ++start_pos; memcpy(&tx_extra[start_pos], extra_nonce.data(), extra_nonce.size()); return true; } //--------------------------------------------------------------- bool remove_field_from_tx_extra(std::vector& tx_extra, const std::type_info &type) { if (tx_extra.empty()) return true; std::string extra_str(reinterpret_cast(tx_extra.data()), tx_extra.size()); std::istringstream iss(extra_str); binary_archive ar(iss); std::ostringstream oss; binary_archive newar(oss); bool eof = false; while (!eof) { tx_extra_field field; bool r = ::do_serialize(ar, field); CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast(tx_extra.data()), tx_extra.size()))); if (field.type() != type) ::do_serialize(newar, field); std::ios_base::iostate state = iss.rdstate(); eof = (EOF == iss.peek()); iss.clear(state); } CHECK_AND_NO_ASSERT_MES_L1(::serialization::check_stream_state(ar), false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast(tx_extra.data()), tx_extra.size()))); tx_extra.clear(); std::string s = oss.str(); tx_extra.reserve(s.size()); std::copy(s.begin(), s.end(), std::back_inserter(tx_extra)); return true; } //--------------------------------------------------------------- void set_payment_id_to_tx_extra_nonce(blobdata& extra_nonce, const crypto::hash& payment_id) { extra_nonce.clear(); extra_nonce.push_back(TX_EXTRA_NONCE_PAYMENT_ID); const uint8_t* payment_id_ptr = reinterpret_cast(&payment_id); std::copy(payment_id_ptr, payment_id_ptr + sizeof(payment_id), std::back_inserter(extra_nonce)); } //--------------------------------------------------------------- void set_encrypted_payment_id_to_tx_extra_nonce(blobdata& extra_nonce, const crypto::hash8& payment_id) { extra_nonce.clear(); extra_nonce.push_back(TX_EXTRA_NONCE_ENCRYPTED_PAYMENT_ID); const uint8_t* payment_id_ptr = reinterpret_cast(&payment_id); std::copy(payment_id_ptr, payment_id_ptr + sizeof(payment_id), std::back_inserter(extra_nonce)); } //--------------------------------------------------------------- bool get_payment_id_from_tx_extra_nonce(const blobdata& extra_nonce, crypto::hash& payment_id) { if(sizeof(crypto::hash) + 1 != extra_nonce.size()) return false; if(TX_EXTRA_NONCE_PAYMENT_ID != extra_nonce[0]) return false; payment_id = *reinterpret_cast(extra_nonce.data() + 1); return true; } //--------------------------------------------------------------- bool get_encrypted_payment_id_from_tx_extra_nonce(const blobdata& extra_nonce, crypto::hash8& payment_id) { if(sizeof(crypto::hash8) + 1 != extra_nonce.size()) return false; if (TX_EXTRA_NONCE_ENCRYPTED_PAYMENT_ID != extra_nonce[0]) return false; payment_id = *reinterpret_cast(extra_nonce.data() + 1); return true; } //--------------------------------------------------------------- bool get_inputs_money_amount(const transaction& tx, uint64_t& money) { money = 0; for(const auto& in: tx.vin) { CHECKED_GET_SPECIFIC_VARIANT(in, const txin_to_key, tokey_in, false); money += tokey_in.amount; } return true; } //--------------------------------------------------------------- uint64_t get_block_height(const block& b) { CHECK_AND_ASSERT_MES(b.miner_tx.vin.size() == 1, 0, "wrong miner tx in block: " << get_block_hash(b) << ", b.miner_tx.vin.size() != 1"); CHECKED_GET_SPECIFIC_VARIANT(b.miner_tx.vin[0], const txin_gen, coinbase_in, 0); return coinbase_in.height; } //--------------------------------------------------------------- bool check_inputs_types_supported(const transaction& tx) { for(const auto& in: tx.vin) { CHECK_AND_ASSERT_MES(in.type() == typeid(txin_to_key), false, "wrong variant type: " << in.type().name() << ", expected " << typeid(txin_to_key).name() << ", in transaction id=" << get_transaction_hash(tx)); } return true; } //----------------------------------------------------------------------------------------------- bool check_outs_valid(const transaction& tx) { for(const tx_out& out: tx.vout) { CHECK_AND_ASSERT_MES(out.target.type() == typeid(txout_to_key), false, "wrong variant type: " << out.target.type().name() << ", expected " << typeid(txout_to_key).name() << ", in transaction id=" << get_transaction_hash(tx)); if (tx.version == 1) { CHECK_AND_NO_ASSERT_MES(0 < out.amount, false, "zero amount output in transaction id=" << get_transaction_hash(tx)); } if(!check_key(boost::get(out.target).key)) return false; } return true; } //----------------------------------------------------------------------------------------------- bool check_money_overflow(const transaction& tx) { return check_inputs_overflow(tx) && check_outs_overflow(tx); } //--------------------------------------------------------------- bool check_inputs_overflow(const transaction& tx) { uint64_t money = 0; for(const auto& in: tx.vin) { CHECKED_GET_SPECIFIC_VARIANT(in, const txin_to_key, tokey_in, false); if(money > tokey_in.amount + money) return false; money += tokey_in.amount; } return true; } //--------------------------------------------------------------- bool check_outs_overflow(const transaction& tx) { uint64_t money = 0; for(const auto& o: tx.vout) { if(money > o.amount + money) return false; money += o.amount; } return true; } //--------------------------------------------------------------- uint64_t get_outs_money_amount(const transaction& tx) { uint64_t outputs_amount = 0; for(const auto& o: tx.vout) outputs_amount += o.amount; return outputs_amount; } //--------------------------------------------------------------- std::string short_hash_str(const crypto::hash& h) { std::string res = string_tools::pod_to_hex(h); CHECK_AND_ASSERT_MES(res.size() == 64, res, "wrong hash256 with string_tools::pod_to_hex conversion"); auto erased_pos = res.erase(8, 48); res.insert(8, "...."); return res; } //--------------------------------------------------------------- bool is_out_to_acc(const account_keys& acc, const txout_to_key& out_key, const crypto::public_key& tx_pub_key, const std::vector& additional_tx_pub_keys, size_t output_index) { crypto::key_derivation derivation; bool r = acc.get_device().generate_key_derivation(tx_pub_key, acc.m_view_secret_key, derivation); CHECK_AND_ASSERT_MES(r, false, "Failed to generate key derivation"); crypto::public_key pk; r = acc.get_device().derive_public_key(derivation, output_index, acc.m_account_address.m_spend_public_key, pk); CHECK_AND_ASSERT_MES(r, false, "Failed to derive public key"); if (pk == out_key.key) return true; // try additional tx pubkeys if available if (!additional_tx_pub_keys.empty()) { CHECK_AND_ASSERT_MES(output_index < additional_tx_pub_keys.size(), false, "wrong number of additional tx pubkeys"); r = acc.get_device().generate_key_derivation(additional_tx_pub_keys[output_index], acc.m_view_secret_key, derivation); CHECK_AND_ASSERT_MES(r, false, "Failed to generate key derivation"); r = acc.get_device().derive_public_key(derivation, output_index, acc.m_account_address.m_spend_public_key, pk); CHECK_AND_ASSERT_MES(r, false, "Failed to derive public key"); return pk == out_key.key; } return false; } //--------------------------------------------------------------- boost::optional is_out_to_acc_precomp(const std::unordered_map& subaddresses, const crypto::public_key& out_key, const crypto::key_derivation& derivation, const std::vector& additional_derivations, size_t output_index, hw::device &hwdev) { // try the shared tx pubkey crypto::public_key subaddress_spendkey; hwdev.derive_subaddress_public_key(out_key, derivation, output_index, subaddress_spendkey); auto found = subaddresses.find(subaddress_spendkey); if (found != subaddresses.end()) return subaddress_receive_info{ found->second, derivation }; // try additional tx pubkeys if available if (!additional_derivations.empty()) { CHECK_AND_ASSERT_MES(output_index < additional_derivations.size(), boost::none, "wrong number of additional derivations"); hwdev.derive_subaddress_public_key(out_key, additional_derivations[output_index], output_index, subaddress_spendkey); found = subaddresses.find(subaddress_spendkey); if (found != subaddresses.end()) return subaddress_receive_info{ found->second, additional_derivations[output_index] }; } return boost::none; } //--------------------------------------------------------------- bool lookup_acc_outs(const account_keys& acc, const transaction& tx, std::vector& outs, uint64_t& money_transfered) { crypto::public_key tx_pub_key = get_tx_pub_key_from_extra(tx); if(null_pkey == tx_pub_key) return false; std::vector additional_tx_pub_keys = get_additional_tx_pub_keys_from_extra(tx); return lookup_acc_outs(acc, tx, tx_pub_key, additional_tx_pub_keys, outs, money_transfered); } //--------------------------------------------------------------- bool lookup_acc_outs(const account_keys& acc, const transaction& tx, const crypto::public_key& tx_pub_key, const std::vector& additional_tx_pub_keys, std::vector& outs, uint64_t& money_transfered) { CHECK_AND_ASSERT_MES(additional_tx_pub_keys.empty() || additional_tx_pub_keys.size() == tx.vout.size(), false, "wrong number of additional pubkeys" ); money_transfered = 0; size_t i = 0; for(const tx_out& o: tx.vout) { CHECK_AND_ASSERT_MES(o.target.type() == typeid(txout_to_key), false, "wrong type id in transaction out" ); if(is_out_to_acc(acc, boost::get(o.target), tx_pub_key, additional_tx_pub_keys, i)) { outs.push_back(i); money_transfered += o.amount; } i++; } return true; } //--------------------------------------------------------------- void get_blob_hash(const blobdata_ref& blob, crypto::hash& res) { cn_fast_hash(blob.data(), blob.size(), res); } //--------------------------------------------------------------- void get_blob_hash(const blobdata& blob, crypto::hash& res) { cn_fast_hash(blob.data(), blob.size(), res); } //--------------------------------------------------------------- void set_default_decimal_point(unsigned int decimal_point) { switch (decimal_point) { case 11: case 9: case 6: case 3: case 0: default_decimal_point = decimal_point; break; default: ASSERT_MES_AND_THROW("Invalid decimal point specification: " << decimal_point); } } //--------------------------------------------------------------- unsigned int get_default_decimal_point() { return default_decimal_point; } //--------------------------------------------------------------- std::string get_unit(unsigned int decimal_point) { if (decimal_point == (unsigned int)-1) decimal_point = default_decimal_point; switch (decimal_point) { case 11: return "wownero"; case 9: return "millinero"; case 6: return "micronero"; case 3: return "nanonero"; case 0: return "piconero"; default: ASSERT_MES_AND_THROW("Invalid decimal point specification: " << decimal_point); } } //--------------------------------------------------------------- static void insert_money_decimal_point(std::string &s, unsigned int decimal_point) { if (decimal_point == (unsigned int)-1) decimal_point = default_decimal_point; if(s.size() < decimal_point+1) { s.insert(0, decimal_point+1 - s.size(), '0'); } if (decimal_point > 0) s.insert(s.size() - decimal_point, "."); } //--------------------------------------------------------------- std::string print_money(uint64_t amount, unsigned int decimal_point) { std::string s = std::to_string(amount); insert_money_decimal_point(s, decimal_point); return s; } //--------------------------------------------------------------- std::string print_money(const boost::multiprecision::uint128_t &amount, unsigned int decimal_point) { std::stringstream ss; ss << amount; std::string s = ss.str(); insert_money_decimal_point(s, decimal_point); return s; } //--------------------------------------------------------------- crypto::hash get_blob_hash(const blobdata& blob) { crypto::hash h = null_hash; get_blob_hash(blob, h); return h; } //--------------------------------------------------------------- crypto::hash get_blob_hash(const blobdata_ref& blob) { crypto::hash h = null_hash; get_blob_hash(blob, h); return h; } //--------------------------------------------------------------- crypto::hash get_transaction_hash(const transaction& t) { crypto::hash h = null_hash; get_transaction_hash(t, h, NULL); CHECK_AND_ASSERT_THROW_MES(get_transaction_hash(t, h, NULL), "Failed to calculate transaction hash"); return h; } //--------------------------------------------------------------- bool get_transaction_hash(const transaction& t, crypto::hash& res) { return get_transaction_hash(t, res, NULL); } //--------------------------------------------------------------- bool calculate_transaction_prunable_hash(const transaction& t, const cryptonote::blobdata_ref *blob, crypto::hash& res) { if (t.version == 1) return false; const unsigned int unprunable_size = t.unprunable_size; if (blob && unprunable_size) { CHECK_AND_ASSERT_MES(unprunable_size <= blob->size(), false, "Inconsistent transaction unprunable and blob sizes"); cryptonote::get_blob_hash(blobdata_ref(blob->data() + unprunable_size, blob->size() - unprunable_size), res); } else { transaction &tt = const_cast(t); std::stringstream ss; binary_archive ba(ss); const size_t inputs = t.vin.size(); const size_t outputs = t.vout.size(); const size_t mixin = t.vin.empty() ? 0 : t.vin[0].type() == typeid(txin_to_key) ? boost::get(t.vin[0]).key_offsets.size() - 1 : 0; bool r = tt.rct_signatures.p.serialize_rctsig_prunable(ba, t.rct_signatures.type, inputs, outputs, mixin); CHECK_AND_ASSERT_MES(r, false, "Failed to serialize rct signatures prunable"); cryptonote::get_blob_hash(ss.str(), res); } return true; } //--------------------------------------------------------------- crypto::hash get_transaction_prunable_hash(const transaction& t, const cryptonote::blobdata_ref *blobdata) { crypto::hash res; if (t.is_prunable_hash_valid()) { #ifdef ENABLE_HASH_CASH_INTEGRITY_CHECK CHECK_AND_ASSERT_THROW_MES(!calculate_transaction_prunable_hash(t, blobdata, res) || t.hash == res, "tx hash cash integrity failure"); #endif res = t.prunable_hash; ++tx_hashes_cached_count; return res; } ++tx_hashes_calculated_count; CHECK_AND_ASSERT_THROW_MES(calculate_transaction_prunable_hash(t, blobdata, res), "Failed to calculate tx prunable hash"); t.set_prunable_hash(res); return res; } //--------------------------------------------------------------- crypto::hash get_pruned_transaction_hash(const transaction& t, const crypto::hash &pruned_data_hash) { // v1 transactions hash the entire blob CHECK_AND_ASSERT_THROW_MES(t.version > 1, "Hash for pruned v1 tx cannot be calculated"); // v2 transactions hash different parts together, than hash the set of those hashes crypto::hash hashes[3]; // prefix get_transaction_prefix_hash(t, hashes[0]); transaction &tt = const_cast(t); // base rct { std::stringstream ss; binary_archive ba(ss); const size_t inputs = t.vin.size(); const size_t outputs = t.vout.size(); bool r = tt.rct_signatures.serialize_rctsig_base(ba, inputs, outputs); CHECK_AND_ASSERT_THROW_MES(r, "Failed to serialize rct signatures base"); cryptonote::get_blob_hash(ss.str(), hashes[1]); } // prunable rct if (t.rct_signatures.type == rct::RCTTypeNull) hashes[2] = crypto::null_hash; else hashes[2] = pruned_data_hash; // the tx hash is the hash of the 3 hashes crypto::hash res = cn_fast_hash(hashes, sizeof(hashes)); t.set_hash(res); return res; } //--------------------------------------------------------------- bool calculate_transaction_hash(const transaction& t, crypto::hash& res, size_t* blob_size) { CHECK_AND_ASSERT_MES(!t.pruned, false, "Cannot calculate the hash of a pruned transaction"); // v1 transactions hash the entire blob if (t.version == 1) { size_t ignored_blob_size, &blob_size_ref = blob_size ? *blob_size : ignored_blob_size; return get_object_hash(t, res, blob_size_ref); } // v2 transactions hash different parts together, than hash the set of those hashes crypto::hash hashes[3]; // prefix get_transaction_prefix_hash(t, hashes[0]); const blobdata blob = tx_to_blob(t); const unsigned int unprunable_size = t.unprunable_size; const unsigned int prefix_size = t.prefix_size; // base rct CHECK_AND_ASSERT_MES(prefix_size <= unprunable_size && unprunable_size <= blob.size(), false, "Inconsistent transaction prefix, unprunable and blob sizes"); cryptonote::get_blob_hash(blobdata_ref(blob.data() + prefix_size, unprunable_size - prefix_size), hashes[1]); // prunable rct if (t.rct_signatures.type == rct::RCTTypeNull) { hashes[2] = crypto::null_hash; } else { cryptonote::blobdata_ref blobref(blob); CHECK_AND_ASSERT_MES(calculate_transaction_prunable_hash(t, &blobref, hashes[2]), false, "Failed to get tx prunable hash"); } // the tx hash is the hash of the 3 hashes res = cn_fast_hash(hashes, sizeof(hashes)); // we still need the size if (blob_size) { if (!t.is_blob_size_valid()) { t.set_blob_size(blob.size()); } *blob_size = t.blob_size; } return true; } //--------------------------------------------------------------- bool get_transaction_hash(const transaction& t, crypto::hash& res, size_t* blob_size) { if (t.is_hash_valid()) { #ifdef ENABLE_HASH_CASH_INTEGRITY_CHECK CHECK_AND_ASSERT_THROW_MES(!calculate_transaction_hash(t, res, blob_size) || t.hash == res, "tx hash cash integrity failure"); #endif res = t.hash; if (blob_size) { if (!t.is_blob_size_valid()) { t.set_blob_size(get_object_blobsize(t)); } *blob_size = t.blob_size; } ++tx_hashes_cached_count; return true; } ++tx_hashes_calculated_count; bool ret = calculate_transaction_hash(t, res, blob_size); if (!ret) return false; t.set_hash(res); if (blob_size) { t.set_blob_size(*blob_size); } return true; } //--------------------------------------------------------------- bool get_transaction_hash(const transaction& t, crypto::hash& res, size_t& blob_size) { return get_transaction_hash(t, res, &blob_size); } //--------------------------------------------------------------- blobdata get_block_hashing_blob(const block& b) { blobdata blob = t_serializable_object_to_blob(static_cast(b)); crypto::hash tree_root_hash = get_tx_tree_hash(b); blob.append(reinterpret_cast(&tree_root_hash), sizeof(tree_root_hash)); blob.append(tools::get_varint_data(b.tx_hashes.size()+1)); return blob; } //--------------------------------------------------------------- bool calculate_block_hash(const block& b, crypto::hash& res, const blobdata_ref *blob) { return get_object_hash(get_block_hashing_blob(b), res); } //--------------------------------------------------------------- bool get_block_hash(const block& b, crypto::hash& res) { if (b.is_hash_valid()) { #ifdef ENABLE_HASH_CASH_INTEGRITY_CHECK CHECK_AND_ASSERT_THROW_MES(!calculate_block_hash(b, res) || b.hash == res, "block hash cash integrity failure"); #endif res = b.hash; ++block_hashes_cached_count; return true; } ++block_hashes_calculated_count; bool ret = calculate_block_hash(b, res); if (!ret) return false; b.set_hash(res); return true; } //--------------------------------------------------------------- crypto::hash get_block_hash(const block& b) { crypto::hash p = null_hash; get_block_hash(b, p); return p; } //--------------------------------------------------------------- crypto::hash get_sig_data(const block& b) { crypto::hash sig_data; blobdata blob = get_block_hashing_blob_sig_data(b); crypto::cn_fast_hash(blob.data(), blob.size(), sig_data); return sig_data; } //--------------------------------------------------------------- blobdata get_block_hashing_blob_sig_data(const block& b) { block_header tmp = static_cast(b); memset(&tmp.signature, 0, sizeof(tmp.signature)); blobdata blob = t_serializable_object_to_blob(tmp); crypto::hash tree_root_hash = get_tx_tree_hash(b); blob.append(reinterpret_cast(&tree_root_hash), sizeof(tree_root_hash)); blob.append(tools::get_varint_data(b.tx_hashes.size()+1)); return blob; } //--------------------------------------------------------------- std::vector relative_output_offsets_to_absolute(const std::vector& off) { std::vector res = off; for(size_t i = 1; i < res.size(); i++) res[i] += res[i-1]; return res; } //--------------------------------------------------------------- std::vector absolute_output_offsets_to_relative(const std::vector& off) { std::vector res = off; if(!off.size()) return res; std::sort(res.begin(), res.end());//just to be sure, actually it is already should be sorted for(size_t i = res.size()-1; i != 0; i--) res[i] -= res[i-1]; return res; } //--------------------------------------------------------------- bool parse_and_validate_block_from_blob(const blobdata_ref& b_blob, block& b, crypto::hash *block_hash) { std::stringstream ss; ss << b_blob; binary_archive ba(ss); bool r = ::serialization::serialize(ba, b); CHECK_AND_ASSERT_MES(r, false, "Failed to parse block from blob"); b.invalidate_hashes(); b.miner_tx.invalidate_hashes(); if (block_hash) { calculate_block_hash(b, *block_hash, &b_blob); ++block_hashes_calculated_count; b.set_hash(*block_hash); } return true; } //--------------------------------------------------------------- bool parse_and_validate_block_from_blob(const blobdata_ref& b_blob, block& b) { return parse_and_validate_block_from_blob(b_blob, b, NULL); } //--------------------------------------------------------------- bool parse_and_validate_block_from_blob(const blobdata_ref& b_blob, block& b, crypto::hash &block_hash) { return parse_and_validate_block_from_blob(b_blob, b, &block_hash); } //--------------------------------------------------------------- blobdata block_to_blob(const block& b) { return t_serializable_object_to_blob(b); } //--------------------------------------------------------------- bool block_to_blob(const block& b, blobdata& b_blob) { return t_serializable_object_to_blob(b, b_blob); } //--------------------------------------------------------------- blobdata tx_to_blob(const transaction& tx) { return t_serializable_object_to_blob(tx); } //--------------------------------------------------------------- bool tx_to_blob(const transaction& tx, blobdata& b_blob) { return t_serializable_object_to_blob(tx, b_blob); } //--------------------------------------------------------------- void get_tx_tree_hash(const std::vector& tx_hashes, crypto::hash& h) { tree_hash(tx_hashes.data(), tx_hashes.size(), h); } //--------------------------------------------------------------- crypto::hash get_tx_tree_hash(const std::vector& tx_hashes) { crypto::hash h = null_hash; get_tx_tree_hash(tx_hashes, h); return h; } //--------------------------------------------------------------- crypto::hash get_tx_tree_hash(const block& b) { std::vector txs_ids; txs_ids.reserve(1 + b.tx_hashes.size()); crypto::hash h = null_hash; size_t bl_sz = 0; CHECK_AND_ASSERT_THROW_MES(get_transaction_hash(b.miner_tx, h, bl_sz), "Failed to calculate transaction hash"); txs_ids.push_back(h); for(auto& th: b.tx_hashes) txs_ids.push_back(th); return get_tx_tree_hash(txs_ids); } //--------------------------------------------------------------- bool is_valid_decomposed_amount(uint64_t amount) { const uint64_t *begin = valid_decomposed_outputs; const uint64_t *end = valid_decomposed_outputs + sizeof(valid_decomposed_outputs) / sizeof(valid_decomposed_outputs[0]); return std::binary_search(begin, end, amount); } //--------------------------------------------------------------- void get_hash_stats(uint64_t &tx_hashes_calculated, uint64_t &tx_hashes_cached, uint64_t &block_hashes_calculated, uint64_t & block_hashes_cached) { tx_hashes_calculated = tx_hashes_calculated_count; tx_hashes_cached = tx_hashes_cached_count; block_hashes_calculated = block_hashes_calculated_count; block_hashes_cached = block_hashes_cached_count; } //--------------------------------------------------------------- crypto::secret_key encrypt_key(crypto::secret_key key, const epee::wipeable_string &passphrase) { crypto::hash hash; crypto::cn_slow_hash(passphrase.data(), passphrase.size(), hash); sc_add((unsigned char*)key.data, (const unsigned char*)key.data, (const unsigned char*)hash.data); return key; } //--------------------------------------------------------------- crypto::secret_key decrypt_key(crypto::secret_key key, const epee::wipeable_string &passphrase) { crypto::hash hash; crypto::cn_slow_hash(passphrase.data(), passphrase.size(), hash); sc_sub((unsigned char*)key.data, (const unsigned char*)key.data, (const unsigned char*)hash.data); return key; } }