// Copyright (c) 2014-2015, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include #include "gtest/gtest.h" #include "blockchain_db/lmdb/db_lmdb.h" #include "cryptonote_core/hardfork.h" using namespace cryptonote; #define BLOCKS_PER_YEAR 525960 #define SECONDS_PER_YEAR 31557600 class TestDB: public BlockchainDB { public: virtual void open(const std::string& filename, const int db_flags = 0) { for (size_t n = 0; n < 256; ++n) starting_height[n] = std::numeric_limits::max(); } virtual void close() {} virtual void sync() {} virtual void reset() {} virtual std::vector get_filenames() const { return std::vector(); } virtual std::string get_db_name() const { return std::string(); } virtual bool lock() { return true; } virtual void unlock() { } virtual void batch_start(uint64_t batch_num_blocks=0) {} virtual void batch_stop() {} virtual void set_batch_transactions(bool) {} virtual bool block_exists(const crypto::hash& h) const { return false; } virtual block get_block(const crypto::hash& h) const { return block(); } virtual uint64_t get_block_height(const crypto::hash& h) const { return 0; } virtual block_header get_block_header(const crypto::hash& h) const { return block_header(); } virtual uint64_t get_block_timestamp(const uint64_t& height) const { return 0; } virtual uint64_t get_top_block_timestamp() const { return 0; } virtual size_t get_block_size(const uint64_t& height) const { return 128; } virtual difficulty_type get_block_cumulative_difficulty(const uint64_t& height) const { return 10; } virtual difficulty_type get_block_difficulty(const uint64_t& height) const { return 0; } virtual uint64_t get_block_already_generated_coins(const uint64_t& height) const { return 10000000000; } virtual crypto::hash get_block_hash_from_height(const uint64_t& height) const { return crypto::hash(); } virtual std::vector get_blocks_range(const uint64_t& h1, const uint64_t& h2) const { return std::vector(); } virtual std::vector get_hashes_range(const uint64_t& h1, const uint64_t& h2) const { return std::vector(); } virtual crypto::hash top_block_hash() const { return crypto::hash(); } virtual block get_top_block() const { return block(); } virtual uint64_t height() const { return blocks.size(); } virtual bool tx_exists(const crypto::hash& h) const { return false; } virtual uint64_t get_tx_unlock_time(const crypto::hash& h) const { return 0; } virtual transaction get_tx(const crypto::hash& h) const { return transaction(); } virtual uint64_t get_tx_count() const { return 0; } virtual std::vector get_tx_list(const std::vector& hlist) const { return std::vector(); } virtual uint64_t get_tx_block_height(const crypto::hash& h) const { return 0; } virtual uint64_t get_num_outputs(const uint64_t& amount) const { return 1; } virtual output_data_t get_output_key(const uint64_t& amount, const uint64_t& index) { return output_data_t(); } virtual output_data_t get_output_key(const uint64_t& global_index) const { return output_data_t(); } virtual tx_out get_output(const crypto::hash& h, const uint64_t& index) const { return tx_out(); } virtual tx_out_index get_output_tx_and_index_from_global(const uint64_t& index) const { return tx_out_index(); } virtual tx_out_index get_output_tx_and_index(const uint64_t& amount, const uint64_t& index) { return tx_out_index(); } virtual void get_output_tx_and_index(const uint64_t& amount, const std::vector &offsets, std::vector &indices) {} virtual void get_output_key(const uint64_t &amount, const std::vector &offsets, std::vector &outputs) {} virtual bool can_thread_bulk_indices() const { return false; } virtual std::vector get_tx_output_indices(const crypto::hash& h) const { return std::vector(); } virtual std::vector get_tx_amount_output_indices(const crypto::hash& h) const { return std::vector(); } virtual bool has_key_image(const crypto::key_image& img) const { return false; } virtual void remove_block() { blocks.pop_back(); } virtual void add_transaction_data(const crypto::hash& blk_hash, const transaction& tx, const crypto::hash& tx_hash) {} virtual void remove_transaction_data(const crypto::hash& tx_hash, const transaction& tx) {} virtual void add_output(const crypto::hash& tx_hash, const tx_out& tx_output, const uint64_t& local_index, const uint64_t unlock_time) {} virtual void remove_output(const tx_out& tx_output) {} virtual void add_spent_key(const crypto::key_image& k_image) {} virtual void remove_spent_key(const crypto::key_image& k_image) {} virtual void add_block( const block& blk , const size_t& block_size , const difficulty_type& cumulative_difficulty , const uint64_t& coins_generated , const crypto::hash& blk_hash ) { blocks.push_back(blk); } virtual block get_block_from_height(const uint64_t& height) const { return blocks[height]; } virtual void set_hard_fork_starting_height(uint8_t version, uint64_t height) { starting_height[version] = height; } virtual uint64_t get_hard_fork_starting_height(uint8_t version) const { return starting_height[version]; } virtual void set_hard_fork_version(uint64_t height, uint8_t version) { printf("set_hard_fork_version(%lu, %u)\n", (unsigned long)height, version); if (versions.size() <= height) versions.resize(height+1); versions[height] = version; } virtual uint8_t get_hard_fork_version(uint64_t height) const { printf("get_hard_fork_version(%lu)\n", (unsigned long)height); return versions[height]; } private: std::vector blocks; uint64_t starting_height[256]; std::deque versions; }; static cryptonote::block mkblock(uint8_t version) { cryptonote::block b; b.major_version = version; return b; } TEST(empty_hardforks, Success) { TestDB db; HardFork hf(db); ASSERT_TRUE(hf.add(1, 0, 0)); hf.init(); ASSERT_TRUE(hf.get_state(time(NULL)) == HardFork::Ready); ASSERT_TRUE(hf.get_state(time(NULL) + 3600*24*400) == HardFork::Ready); for (uint64_t h = 0; h <= 10; ++h) { db.add_block(mkblock(1), 0, 0, 0, crypto::hash()); ASSERT_TRUE(hf.add(db.get_block_from_height(h), h)); } ASSERT_EQ(hf.get(0), 1); ASSERT_EQ(hf.get(1), 1); ASSERT_EQ(hf.get(10), 1); } TEST(ordering, Success) { TestDB db; HardFork hf(db); ASSERT_TRUE(hf.add(2, 2, 1)); ASSERT_FALSE(hf.add(3, 3, 1)); ASSERT_FALSE(hf.add(3, 2, 2)); ASSERT_FALSE(hf.add(2, 3, 2)); ASSERT_TRUE(hf.add(3, 10, 2)); ASSERT_TRUE(hf.add(4, 20, 3)); ASSERT_FALSE(hf.add(5, 5, 4)); } TEST(states, Success) { TestDB db; HardFork hf(db); ASSERT_TRUE(hf.add(1, 0, 0)); ASSERT_TRUE(hf.add(2, BLOCKS_PER_YEAR, SECONDS_PER_YEAR)); ASSERT_TRUE(hf.get_state(0) == HardFork::Ready); ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR / 2) == HardFork::Ready); ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR + HardFork::DEFAULT_UPDATE_TIME / 2) == HardFork::Ready); ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR + (HardFork::DEFAULT_UPDATE_TIME + HardFork::DEFAULT_FORKED_TIME) / 2) == HardFork::UpdateNeeded); ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR + HardFork::DEFAULT_FORKED_TIME * 2) == HardFork::LikelyForked); ASSERT_TRUE(hf.add(3, BLOCKS_PER_YEAR * 5, SECONDS_PER_YEAR * 5)); ASSERT_TRUE(hf.get_state(0) == HardFork::Ready); ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR / 2) == HardFork::Ready); ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR + HardFork::DEFAULT_UPDATE_TIME / 2) == HardFork::Ready); ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR + (HardFork::DEFAULT_UPDATE_TIME + HardFork::DEFAULT_FORKED_TIME) / 2) == HardFork::Ready); ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR + HardFork::DEFAULT_FORKED_TIME * 2) == HardFork::Ready); } TEST(steps_asap, Success) { TestDB db; HardFork hf(db, 1,1,1,1); // v h t ASSERT_TRUE(hf.add(1, 0, 0)); ASSERT_TRUE(hf.add(4, 2, 1)); ASSERT_TRUE(hf.add(7, 4, 2)); ASSERT_TRUE(hf.add(9, 6, 3)); hf.init(); for (uint64_t h = 0; h < 10; ++h) { db.add_block(mkblock(10), 0, 0, 0, crypto::hash()); ASSERT_TRUE(hf.add(db.get_block_from_height(h), h)); } ASSERT_EQ(hf.get(0), 1); ASSERT_EQ(hf.get(1), 1); ASSERT_EQ(hf.get(2), 4); ASSERT_EQ(hf.get(3), 4); ASSERT_EQ(hf.get(4), 7); ASSERT_EQ(hf.get(5), 7); ASSERT_EQ(hf.get(6), 9); ASSERT_EQ(hf.get(7), 9); ASSERT_EQ(hf.get(8), 9); ASSERT_EQ(hf.get(9), 9); } TEST(steps_1, Success) { TestDB db; HardFork hf(db, 1,1,1,1); ASSERT_TRUE(hf.add(1, 0, 0)); for (int n = 1 ; n < 10; ++n) ASSERT_TRUE(hf.add(n+1, n, n)); hf.init(); for (uint64_t h = 0 ; h < 10; ++h) { db.add_block(mkblock(h+1), 0, 0, 0, crypto::hash()); ASSERT_TRUE(hf.add(db.get_block_from_height(h), h)); } for (uint64_t h = 0; h < 10; ++h) { ASSERT_EQ(hf.get(h), h+1); } } TEST(reorganize, Same) { for (int history = 1; history <= 12; ++history) { TestDB db; HardFork hf(db, 1, 1, 1, history, 100); // v h t ASSERT_TRUE(hf.add(1, 0, 0)); ASSERT_TRUE(hf.add(4, 2, 1)); ASSERT_TRUE(hf.add(7, 4, 2)); ASSERT_TRUE(hf.add(9, 6, 3)); hf.init(); // index 0 1 2 3 4 5 6 7 8 9 static const uint8_t block_versions[] = { 1, 1, 4, 4, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 }; for (uint64_t h = 0; h < 20; ++h) { db.add_block(mkblock(block_versions[h]), 0, 0, 0, crypto::hash()); ASSERT_TRUE(hf.add(db.get_block_from_height(h), h)); } for (uint64_t rh = 0; rh < 20; ++rh) { hf.reorganize_from_block_height(rh); for (int hh = 0; hh < 20; ++hh) { uint8_t version = hh >= (history-1) ? block_versions[hh - (history-1)] : 1; ASSERT_EQ(hf.get(hh), version); } } } } TEST(reorganize, Changed) { int history = 4; TestDB db; HardFork hf(db, 1, 1, 1, 4, 100); // v h t ASSERT_TRUE(hf.add(1, 0, 0)); ASSERT_TRUE(hf.add(4, 2, 1)); ASSERT_TRUE(hf.add(7, 4, 2)); ASSERT_TRUE(hf.add(9, 6, 3)); hf.init(); // index 0 1 2 3 4 5 6 7 8 9 static const uint8_t block_versions[] = { 1, 1, 4, 4, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 }; for (uint64_t h = 0; h < 16; ++h) { db.add_block(mkblock(block_versions[h]), 0, 0, 0, crypto::hash()); ASSERT_TRUE (hf.add(db.get_block_from_height(h), h)); } for (uint64_t rh = 0; rh < 16; ++rh) { hf.reorganize_from_block_height(rh); for (int hh = 0; hh < 16; ++hh) { uint8_t version = hh >= (history-1) ? block_versions[hh - (history-1)] : 1; ASSERT_EQ(hf.get(hh), version); } } // delay a bit for 9, and go back to 1 to check it stays at 9 static const uint8_t block_versions_new[] = { 1, 1, 4, 4, 7, 7, 4, 7, 7, 7, 9, 9, 9, 9, 9, 1 }; static const uint8_t expected_versions_new[] = { 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 7, 7, 7, 9, 9, 9 }; for (uint64_t h = 3; h < 16; ++h) { db.remove_block(); } ASSERT_EQ(db.height(), 3); hf.reorganize_from_block_height(2); for (uint64_t h = 3; h < 16; ++h) { db.add_block(mkblock(block_versions_new[h]), 0, 0, 0, crypto::hash()); bool ret = hf.add(db.get_block_from_height(h), h); ASSERT_EQ (ret, h < 15); } db.remove_block(); // last block added to the blockchain, but not hf ASSERT_EQ(db.height(), 15); for (int hh = 0; hh < 15; ++hh) { ASSERT_EQ(hf.get(hh), expected_versions_new[hh]); } } TEST(voting, threshold) { for (int threshold = 87; threshold <= 88; ++threshold) { TestDB db; HardFork hf(db, 1, 1, 1, 8, threshold); // v h t ASSERT_TRUE(hf.add(1, 0, 0)); ASSERT_TRUE(hf.add(2, 2, 1)); hf.init(); for (uint64_t h = 0; h <= 8; ++h) { uint8_t v = 1 + !!(h % 8); db.add_block(mkblock(v), 0, 0, 0, crypto::hash()); bool ret = hf.add(db.get_block_from_height(h), h); if (h >= 8 && threshold == 87) { ASSERT_FALSE(ret); } else { ASSERT_TRUE(ret); uint8_t expected = threshold == 88 ? 1 : h < 7 ? 1 : 2; ASSERT_EQ(hf.get(h), expected); } } } } TEST(new_blocks, denied) { TestDB db; HardFork hf(db, 1, 1, 1, 4, 50); // v h t ASSERT_TRUE(hf.add(1, 0, 0)); ASSERT_TRUE(hf.add(2, 2, 1)); hf.init(); ASSERT_FALSE(hf.add(mkblock(0), 0)); ASSERT_TRUE(hf.add(mkblock(1), 0)); ASSERT_TRUE(hf.add(mkblock(1), 1)); ASSERT_TRUE(hf.add(mkblock(1), 2)); ASSERT_TRUE(hf.add(mkblock(2), 3)); ASSERT_TRUE(hf.add(mkblock(1), 4)); ASSERT_TRUE(hf.add(mkblock(1), 5)); ASSERT_TRUE(hf.add(mkblock(1), 6)); ASSERT_TRUE(hf.add(mkblock(2), 7)); ASSERT_TRUE(hf.add(mkblock(2), 8)); // we reach 50% of the last 4 ASSERT_FALSE(hf.add(mkblock(1), 9)); // so this one can't get added ASSERT_TRUE(hf.add(mkblock(2), 10)); ASSERT_EQ(hf.get_start_height(2), 8); } TEST(new_version, early) { TestDB db; HardFork hf(db, 1, 1, 1, 4, 50); // v h t ASSERT_TRUE(hf.add(1, 0, 0)); ASSERT_TRUE(hf.add(2, 4, 1)); hf.init(); ASSERT_FALSE(hf.add(mkblock(0), 0)); ASSERT_TRUE(hf.add(mkblock(2), 0)); ASSERT_TRUE(hf.add(mkblock(2), 1)); // we have enough votes already ASSERT_TRUE(hf.add(mkblock(2), 2)); ASSERT_TRUE(hf.add(mkblock(1), 3)); // we accept a previous version because we did not switch, even with all the votes ASSERT_TRUE(hf.add(mkblock(2), 4)); // but have to wait for the declared height anyway ASSERT_TRUE(hf.add(mkblock(2), 5)); ASSERT_FALSE(hf.add(mkblock(1), 6)); // we don't accept 1 anymore ASSERT_TRUE(hf.add(mkblock(2), 7)); // but we do accept 2 ASSERT_EQ(hf.get_start_height(2), 4); } TEST(reorganize, changed) { TestDB db; HardFork hf(db, 1, 1, 1, 4, 50); // v h t ASSERT_TRUE(hf.add(1, 0, 0)); ASSERT_TRUE(hf.add(2, 2, 1)); ASSERT_TRUE(hf.add(3, 5, 2)); hf.init(); #define ADD(v, h, a) \ do { \ cryptonote::block b = mkblock(v); \ db.add_block(b, 0, 0, 0, crypto::hash()); \ ASSERT_##a(hf.add(b, h)); \ } while(0) #define ADD_TRUE(v, h) ADD(v, h, TRUE) #define ADD_FALSE(v, h) ADD(v, h, FALSE) ADD_FALSE(0, 0); ADD_TRUE(1, 0); ADD_TRUE(1, 1); ADD_TRUE(2, 2); ADD_TRUE(2, 3); // switch to 2 here ADD_TRUE(2, 4); ADD_TRUE(2, 5); ADD_TRUE(2, 6); ASSERT_EQ(hf.get_current_version(), 2); ADD_TRUE(3, 7); ADD_TRUE(4, 8); ADD_TRUE(4, 9); ASSERT_EQ(hf.get_start_height(2), 3); ASSERT_EQ(hf.get_start_height(3), 8); ASSERT_EQ(hf.get_current_version(), 3); // pop a few blocks and check current version goes back down db.remove_block(); hf.reorganize_from_block_height(8); ASSERT_EQ(hf.get_current_version(), 3); db.remove_block(); hf.reorganize_from_block_height(7); ASSERT_EQ(hf.get_current_version(), 2); db.remove_block(); ASSERT_EQ(hf.get_current_version(), 2); // add blocks again, but remaining at 2 ADD_TRUE(2, 7); ADD_TRUE(2, 8); ADD_TRUE(2, 9); ASSERT_EQ(hf.get_start_height(2), 3); // unchanged ASSERT_EQ(hf.get_current_version(), 2); // we did not bump to 3 this time ASSERT_EQ(hf.get_start_height(3), std::numeric_limits::max()); // not yet }