// Copyright (c) 2019-2022, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include #include #include #include #include #include #include #include "byte_slice.h" #include "crypto/crypto.h" #include "cryptonote_basic/connection_context.h" #include "cryptonote_config.h" #include "cryptonote_core/cryptonote_core.h" #include "cryptonote_core/i_core_events.h" #include "cryptonote_protocol/cryptonote_protocol_defs.h" #include "cryptonote_protocol/levin_notify.h" #include "int-util.h" #include "p2p/net_node.h" #include "net/dandelionpp.h" #include "net/levin_base.h" #include "span.h" namespace { class test_endpoint final : public epee::net_utils::i_service_endpoint { boost::asio::io_service& io_service_; std::size_t ref_count_; virtual bool do_send(epee::byte_slice message) override final { send_queue_.push_back(std::move(message)); return true; } virtual bool close() override final { return true; } virtual bool send_done() override final { throw std::logic_error{"send_done not implemented"}; } virtual bool call_run_once_service_io() override final { return io_service_.run_one(); } virtual bool request_callback() override final { throw std::logic_error{"request_callback not implemented"}; } virtual boost::asio::io_service& get_io_service() override final { return io_service_; } virtual bool add_ref() override final { ++ref_count_; return true; } virtual bool release() override final { --ref_count_; return true; } public: test_endpoint(boost::asio::io_service& io_service) : epee::net_utils::i_service_endpoint(), io_service_(io_service), ref_count_(0), send_queue_() {} virtual ~test_endpoint() noexcept(false) override final { EXPECT_EQ(0u, ref_count_); } std::deque send_queue_; }; class test_core_events final : public cryptonote::i_core_events { std::map> relayed_; virtual bool is_synchronized() const final { return false; } virtual uint64_t get_current_blockchain_height() const final { return 0; } virtual void on_transactions_relayed(epee::span txes, cryptonote::relay_method relay) override final { std::vector& cached = relayed_[relay]; for (const auto& tx : txes) cached.push_back(tx); } public: test_core_events() : relayed_() {} std::size_t relayed_method_size() const noexcept { return relayed_.size(); } bool has_stem_txes() const noexcept { return relayed_.count(cryptonote::relay_method::stem); } std::vector take_relayed(cryptonote::relay_method relay) { auto elems = relayed_.find(relay); if (elems == relayed_.end()) throw std::logic_error{"on_transactions_relayed empty"}; std::vector out{std::move(elems->second)}; relayed_.erase(elems); return out; } }; class test_connection { test_endpoint endpoint_; cryptonote::levin::detail::p2p_context context_; epee::levin::async_protocol_handler handler_; public: test_connection(boost::asio::io_service& io_service, cryptonote::levin::connections& connections, boost::uuids::random_generator& random_generator, const bool is_incoming) : endpoint_(io_service), context_(), handler_(std::addressof(endpoint_), connections, context_) { using base_type = epee::net_utils::connection_context_base; static_cast(context_) = base_type{random_generator(), {}, is_incoming, false}; context_.m_state = cryptonote::cryptonote_connection_context::state_normal; handler_.after_init_connection(); } //\return Number of messages processed std::size_t process_send_queue(const bool valid = true) { std::size_t count = 0; for ( ; !endpoint_.send_queue_.empty(); ++count, endpoint_.send_queue_.pop_front()) { EXPECT_EQ(valid, handler_.handle_recv(endpoint_.send_queue_.front().data(), endpoint_.send_queue_.front().size())); } return count; } const boost::uuids::uuid& get_id() const noexcept { return context_.m_connection_id; } bool is_incoming() const noexcept { return context_.m_is_income; } }; struct received_message { boost::uuids::uuid connection; int command; std::string payload; }; class test_receiver final : public epee::levin::levin_commands_handler { std::deque invoked_; std::deque notified_; template static std::pair get_message(std::deque& queue) { if (queue.empty()) throw std::logic_error{"Queue has no received messges"}; if (queue.front().command != T::ID) throw std::logic_error{"Unexpected ID at front of message queue"}; epee::serialization::portable_storage storage{}; if(!storage.load_from_binary(epee::strspan(queue.front().payload))) throw std::logic_error{"Unable to parse epee binary format"}; typename T::request request{}; if (!request.load(storage)) throw std::logic_error{"Unable to load into expected request"}; boost::uuids::uuid connection = queue.front().connection; queue.pop_front(); return {connection, std::move(request)}; } static received_message get_raw_message(std::deque& queue) { received_message out{std::move(queue.front())}; queue.pop_front(); return out; } virtual int invoke(int command, const epee::span in_buff, epee::byte_stream& buff_out, cryptonote::levin::detail::p2p_context& context) override final { buff_out.clear(); invoked_.push_back( {context.m_connection_id, command, std::string{reinterpret_cast(in_buff.data()), in_buff.size()}} ); return 1; } virtual int notify(int command, const epee::span in_buff, cryptonote::levin::detail::p2p_context& context) override final { notified_.push_back( {context.m_connection_id, command, std::string{reinterpret_cast(in_buff.data()), in_buff.size()}} ); return 1; } virtual void callback(cryptonote::levin::detail::p2p_context& context) override final {} virtual void on_connection_new(cryptonote::levin::detail::p2p_context& context) override final { if (notifier) notifier->on_handshake_complete(context.m_connection_id, context.m_is_income); } virtual void on_connection_close(cryptonote::levin::detail::p2p_context& context) override final { if (notifier) notifier->on_connection_close(context.m_connection_id); } public: test_receiver() : epee::levin::levin_commands_handler(), invoked_(), notified_() {} virtual ~test_receiver() noexcept override final{} std::size_t invoked_size() const noexcept { return invoked_.size(); } std::size_t notified_size() const noexcept { return notified_.size(); } template std::pair get_invoked() { return get_message(invoked_); } template std::pair get_notification() { return get_message(notified_); } received_message get_raw_notification() { return get_raw_message(notified_); } std::shared_ptr notifier{}; }; class levin_notify : public ::testing::Test { const std::shared_ptr connections_; std::set connection_ids_; public: levin_notify() : ::testing::Test(), connections_(std::make_shared()), connection_ids_(), random_generator_(), io_service_(), receiver_(), contexts_(), events_() { connections_->set_handler(std::addressof(receiver_), nullptr); } virtual void TearDown() override final { EXPECT_EQ(0u, receiver_.invoked_size()); EXPECT_EQ(0u, receiver_.notified_size()); EXPECT_EQ(0u, events_.relayed_method_size()); } cryptonote::levin::connections& get_connections() noexcept { return *connections_; } void add_connection(const bool is_incoming) { contexts_.emplace_back(io_service_, *connections_, random_generator_, is_incoming); EXPECT_TRUE(connection_ids_.emplace(contexts_.back().get_id()).second); EXPECT_EQ(connection_ids_.size(), connections_->get_connections_count()); } std::shared_ptr make_notifier(const std::size_t noise_size, bool is_public, bool pad_txs) { epee::byte_slice noise = nullptr; if (noise_size) noise = epee::levin::make_noise_notify(noise_size); epee::net_utils::zone zone = is_public ? epee::net_utils::zone::public_ : epee::net_utils::zone::i2p; receiver_.notifier.reset( new cryptonote::levin::notify{io_service_, connections_, std::move(noise), zone, pad_txs, events_} ); return receiver_.notifier; } boost::uuids::random_generator random_generator_; boost::asio::io_service io_service_; test_receiver receiver_; std::deque contexts_; test_core_events events_; }; } TEST(make_header, no_expect_return) { static constexpr const std::size_t max_length = std::numeric_limits::max(); const epee::levin::bucket_head2 header1 = epee::levin::make_header(1024, max_length, 5601, false); EXPECT_EQ(SWAP64LE(LEVIN_SIGNATURE), header1.m_signature); EXPECT_FALSE(header1.m_have_to_return_data); EXPECT_EQ(SWAP64LE(max_length), header1.m_cb); EXPECT_EQ(SWAP32LE(1024), header1.m_command); EXPECT_EQ(SWAP32LE(LEVIN_PROTOCOL_VER_1), header1.m_protocol_version); EXPECT_EQ(SWAP32LE(5601), header1.m_flags); } TEST(make_header, expect_return) { const epee::levin::bucket_head2 header1 = epee::levin::make_header(65535, 0, 0, true); EXPECT_EQ(SWAP64LE(LEVIN_SIGNATURE), header1.m_signature); EXPECT_TRUE(header1.m_have_to_return_data); EXPECT_EQ(0u, header1.m_cb); EXPECT_EQ(SWAP32LE(65535), header1.m_command); EXPECT_EQ(SWAP32LE(LEVIN_PROTOCOL_VER_1), header1.m_protocol_version); EXPECT_EQ(0u, header1.m_flags); } TEST(message_writer, invoke_with_empty_payload) { const epee::byte_slice message = epee::levin::message_writer{}.finalize_invoke(443); const epee::levin::bucket_head2 header = epee::levin::make_header(443, 0, LEVIN_PACKET_REQUEST, true); ASSERT_EQ(sizeof(header), message.size()); EXPECT_TRUE(std::memcmp(std::addressof(header), message.data(), sizeof(header)) == 0); } TEST(message_writer, invoke_with_payload) { std::string bytes(100, 'a'); std::generate(bytes.begin(), bytes.end(), crypto::random_device{}); epee::levin::message_writer writer{}; writer.buffer.write(epee::to_span(bytes)); const epee::byte_slice message = writer.finalize_invoke(443); const epee::levin::bucket_head2 header = epee::levin::make_header(443, bytes.size(), LEVIN_PACKET_REQUEST, true); ASSERT_EQ(sizeof(header) + bytes.size(), message.size()); EXPECT_TRUE(std::memcmp(std::addressof(header), message.data(), sizeof(header)) == 0); EXPECT_TRUE(std::memcmp(bytes.data(), message.data() + sizeof(header), bytes.size()) == 0); } TEST(message_writer, notify_with_empty_payload) { const epee::byte_slice message = epee::levin::message_writer{}.finalize_notify(443); const epee::levin::bucket_head2 header = epee::levin::make_header(443, 0, LEVIN_PACKET_REQUEST, false); ASSERT_EQ(sizeof(header), message.size()); EXPECT_TRUE(std::memcmp(std::addressof(header), message.data(), sizeof(header)) == 0); } TEST(message_writer, notify_with_payload) { std::string bytes(100, 'a'); std::generate(bytes.begin(), bytes.end(), crypto::random_device{}); epee::levin::message_writer writer{}; writer.buffer.write(epee::to_span(bytes)); const epee::byte_slice message = writer.finalize_notify(443); const epee::levin::bucket_head2 header = epee::levin::make_header(443, bytes.size(), LEVIN_PACKET_REQUEST, false); ASSERT_EQ(sizeof(header) + bytes.size(), message.size()); EXPECT_TRUE(std::memcmp(std::addressof(header), message.data(), sizeof(header)) == 0); EXPECT_TRUE(std::memcmp(bytes.data(), message.data() + sizeof(header), bytes.size()) == 0); } TEST(message_writer, response_with_empty_payload) { const epee::byte_slice message = epee::levin::message_writer{}.finalize_response(443, 1); epee::levin::bucket_head2 header = epee::levin::make_header(443, 0, LEVIN_PACKET_RESPONSE, false); header.m_return_code = SWAP32LE(1); ASSERT_EQ(sizeof(header), message.size()); EXPECT_TRUE(std::memcmp(std::addressof(header), message.data(), sizeof(header)) == 0); } TEST(message_writer, response_with_payload) { std::string bytes(100, 'a'); std::generate(bytes.begin(), bytes.end(), crypto::random_device{}); epee::levin::message_writer writer{}; writer.buffer.write(epee::to_span(bytes)); const epee::byte_slice message = writer.finalize_response(443, 6450); epee::levin::bucket_head2 header = epee::levin::make_header(443, bytes.size(), LEVIN_PACKET_RESPONSE, false); header.m_return_code = SWAP32LE(6450); ASSERT_EQ(sizeof(header) + bytes.size(), message.size()); EXPECT_TRUE(std::memcmp(std::addressof(header), message.data(), sizeof(header)) == 0); EXPECT_TRUE(std::memcmp(bytes.data(), message.data() + sizeof(header), bytes.size()) == 0); } TEST(message_writer, error) { epee::levin::message_writer writer{}; writer.buffer.clear(); EXPECT_THROW(writer.finalize_invoke(0), std::runtime_error); EXPECT_THROW(writer.finalize_notify(0), std::runtime_error); EXPECT_THROW(writer.finalize_response(0, 0), std::runtime_error); } TEST(make_noise, invalid) { EXPECT_TRUE(epee::levin::make_noise_notify(sizeof(epee::levin::bucket_head2) - 1).empty()); } TEST(make_noise, valid) { static constexpr const std::uint32_t flags = LEVIN_PACKET_BEGIN | LEVIN_PACKET_END; const epee::byte_slice noise = epee::levin::make_noise_notify(1024); const epee::levin::bucket_head2 header = epee::levin::make_header(0, 1024 - sizeof(epee::levin::bucket_head2), flags, false); ASSERT_EQ(1024, noise.size()); EXPECT_TRUE(std::memcmp(std::addressof(header), noise.data(), sizeof(header)) == 0); EXPECT_EQ(1024 - sizeof(header), std::count(noise.cbegin() + sizeof(header), noise.cend(), 0)); } TEST(make_fragment, invalid) { EXPECT_TRUE(epee::levin::make_fragmented_notify(0, 0, epee::levin::message_writer{}).empty()); } TEST(make_fragment, single) { const epee::byte_slice noise = epee::levin::make_noise_notify(1024); const epee::byte_slice fragment = epee::levin::make_fragmented_notify(noise.size(), 11, epee::levin::message_writer{}); const epee::levin::bucket_head2 header = epee::levin::make_header(11, 1024 - sizeof(epee::levin::bucket_head2), LEVIN_PACKET_REQUEST, false); EXPECT_EQ(1024, noise.size()); ASSERT_EQ(1024, fragment.size()); EXPECT_TRUE(std::memcmp(std::addressof(header), fragment.data(), sizeof(header)) == 0); EXPECT_EQ(1024 - sizeof(header), std::count(noise.cbegin() + sizeof(header), noise.cend(), 0)); } TEST(make_fragment, multiple) { std::string bytes(1024 * 3 - 150, 'a'); std::generate(bytes.begin(), bytes.end(), crypto::random_device{}); epee::levin::message_writer message; message.buffer.write(epee::to_span(bytes)); const epee::byte_slice noise = epee::levin::make_noise_notify(1024); epee::byte_slice fragment = epee::levin::make_fragmented_notify(noise.size(), 114, std::move(message)); EXPECT_EQ(1024 * 3, fragment.size()); epee::levin::bucket_head2 header = epee::levin::make_header(0, 1024 - sizeof(epee::levin::bucket_head2), LEVIN_PACKET_BEGIN, false); ASSERT_LE(sizeof(header), fragment.size()); EXPECT_TRUE(std::memcmp(std::addressof(header), fragment.data(), sizeof(header)) == 0); fragment.take_slice(sizeof(header)); header.m_flags = LEVIN_PACKET_REQUEST; header.m_cb = bytes.size(); header.m_command = 114; ASSERT_LE(sizeof(header), fragment.size()); EXPECT_TRUE(std::memcmp(std::addressof(header), fragment.data(), sizeof(header)) == 0); fragment.take_slice(sizeof(header)); ASSERT_LE(bytes.size(), fragment.size()); EXPECT_TRUE(std::memcmp(bytes.data(), fragment.data(), 1024 - sizeof(header) * 2) == 0); bytes.erase(0, 1024 - sizeof(header) * 2); fragment.take_slice(1024 - sizeof(header) * 2); header.m_flags = 0; header.m_cb = 1024 - sizeof(header); header.m_command = 0; ASSERT_LE(sizeof(header), fragment.size()); EXPECT_TRUE(std::memcmp(std::addressof(header), fragment.data(), sizeof(header)) == 0); fragment.take_slice(sizeof(header)); ASSERT_LE(bytes.size(), fragment.size()); EXPECT_TRUE(std::memcmp(bytes.data(), fragment.data(), 1024 - sizeof(header)) == 0); bytes.erase(0, 1024 - sizeof(header)); fragment.take_slice(1024 - sizeof(header)); header.m_flags = LEVIN_PACKET_END; ASSERT_LE(sizeof(header), fragment.size()); EXPECT_TRUE(std::memcmp(std::addressof(header), fragment.data(), sizeof(header)) == 0); fragment.take_slice(sizeof(header)); EXPECT_TRUE(std::memcmp(bytes.data(), fragment.data(), bytes.size()) == 0); fragment.take_slice(bytes.size()); EXPECT_EQ(18, fragment.size()); EXPECT_EQ(18, std::count(fragment.cbegin(), fragment.cend(), 0)); } TEST_F(levin_notify, defaulted) { cryptonote::levin::notify notifier{}; { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } EXPECT_TRUE(notifier.send_txs({}, random_generator_(), cryptonote::relay_method::local)); std::vector txs(2); txs[0].resize(100, 'e'); EXPECT_FALSE(notifier.send_txs(std::move(txs), random_generator_(), cryptonote::relay_method::local)); } TEST_F(levin_notify, fluff_without_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'f'); txs[1].resize(200, 'e'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::fluff)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); notifier.run_fluff(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) EXPECT_EQ(1u, context->process_send_queue()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::fluff)); std::sort(txs.begin(), txs.end()); ASSERT_EQ(9u, receiver_.notified_size()); for (unsigned count = 0; count < 9; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } } TEST_F(levin_notify, stem_without_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'f'); txs[1].resize(200, 'e'); std::vector sorted_txs = txs; std::sort(sorted_txs.begin(), sorted_txs.end()); ASSERT_EQ(10u, contexts_.size()); bool has_stemmed = false; bool has_fluffed = false; while (!has_stemmed || !has_fluffed) { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::stem)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); const bool is_stem = events_.has_stem_txes(); EXPECT_EQ(txs, events_.take_relayed(is_stem ? cryptonote::relay_method::stem : cryptonote::relay_method::fluff)); if (!is_stem) { notifier.run_fluff(); ASSERT_LT(0u, io_service_.poll()); } std::size_t send_count = 0; EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const std::size_t sent = context->process_send_queue(); if (sent && is_stem) { EXPECT_EQ(1u, (context - contexts_.begin()) % 2); } send_count += sent; } EXPECT_EQ(is_stem ? 1u : 9u, send_count); ASSERT_EQ(is_stem ? 1u : 9u, receiver_.notified_size()); for (unsigned count = 0; count < (is_stem ? 1u : 9u); ++count) { auto notification = receiver_.get_notification().second; if (is_stem) EXPECT_EQ(txs, notification.txs); else EXPECT_EQ(sorted_txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_EQ(!is_stem, notification.dandelionpp_fluff); } has_stemmed |= is_stem; has_fluffed |= !is_stem; notifier.run_epoch(); } } TEST_F(levin_notify, stem_no_outs_without_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(true); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'f'); txs[1].resize(200, 'e'); std::vector sorted_txs = txs; std::sort(sorted_txs.begin(), sorted_txs.end()); ASSERT_EQ(10u, contexts_.size()); auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::stem)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::fluff)); if (events_.has_stem_txes()) { EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::stem)); } notifier.run_fluff(); ASSERT_LT(0u, io_service_.poll()); std::size_t send_count = 0; EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { send_count += context->process_send_queue(); } EXPECT_EQ(9u, send_count); ASSERT_EQ(9u, receiver_.notified_size()); for (unsigned count = 0; count < 9u; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(sorted_txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } TEST_F(levin_notify, local_without_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector my_txs(2); my_txs[0].resize(100, 'f'); my_txs[1].resize(200, 'e'); std::vector their_txs{2}; their_txs[0].resize(300, 'g'); their_txs[1].resize(250, 'h'); std::vector my_sorted_txs = my_txs; std::sort(my_sorted_txs.begin(), my_sorted_txs.end()); std::vector their_sorted_txs = their_txs; std::sort(their_sorted_txs.begin(), their_sorted_txs.end()); ASSERT_EQ(10u, contexts_.size()); bool has_stemmed = false; bool has_fluffed = false; while (!has_stemmed || !has_fluffed) { // run their "their" txes first auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(their_txs, context->get_id(), cryptonote::relay_method::stem)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); const bool is_stem = events_.has_stem_txes(); EXPECT_EQ(their_txs, events_.take_relayed(is_stem ? cryptonote::relay_method::stem : cryptonote::relay_method::fluff)); if (!is_stem) { notifier.run_fluff(); ASSERT_LT(0u, io_service_.poll()); } std::size_t send_count = 0; EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const std::size_t sent = context->process_send_queue(); if (sent && is_stem) { EXPECT_EQ(1u, (context - contexts_.begin()) % 2); } send_count += sent; } EXPECT_EQ(is_stem ? 1u : 9u, send_count); ASSERT_EQ(is_stem ? 1u : 9u, receiver_.notified_size()); for (unsigned count = 0; count < (is_stem ? 1u : 9u); ++count) { auto notification = receiver_.get_notification().second; if (is_stem) EXPECT_EQ(their_txs, notification.txs); else EXPECT_EQ(their_sorted_txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_EQ(!is_stem, notification.dandelionpp_fluff); } // run "my" txes which must always be stem context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(my_txs, context->get_id(), cryptonote::relay_method::local)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_TRUE(events_.has_stem_txes()); EXPECT_EQ(my_txs, events_.take_relayed(cryptonote::relay_method::stem)); send_count = 0; EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const std::size_t sent = context->process_send_queue(); if (sent) { EXPECT_EQ(1u, (context - contexts_.begin()) % 2); } send_count += sent; } EXPECT_EQ(1u, send_count); EXPECT_EQ(1u, receiver_.notified_size()); auto notification = receiver_.get_notification().second; EXPECT_EQ(my_txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_TRUE(!notification.dandelionpp_fluff); has_stemmed |= is_stem; has_fluffed |= !is_stem; notifier.run_epoch(); } } TEST_F(levin_notify, forward_without_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'f'); txs[1].resize(200, 'e'); std::vector sorted_txs = txs; std::sort(sorted_txs.begin(), sorted_txs.end()); ASSERT_EQ(10u, contexts_.size()); bool has_stemmed = false; bool has_fluffed = false; while (!has_stemmed || !has_fluffed) { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::forward)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); const bool is_stem = events_.has_stem_txes(); EXPECT_EQ(txs, events_.take_relayed(is_stem ? cryptonote::relay_method::stem : cryptonote::relay_method::fluff)); if (!is_stem) { notifier.run_fluff(); ASSERT_LT(0u, io_service_.poll()); } std::size_t send_count = 0; EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const std::size_t sent = context->process_send_queue(); if (sent && is_stem) { EXPECT_EQ(1u, (context - contexts_.begin()) % 2); } send_count += sent; } EXPECT_EQ(is_stem ? 1u : 9u, send_count); ASSERT_EQ(is_stem ? 1u : 9u, receiver_.notified_size()); for (unsigned count = 0; count < (is_stem ? 1u : 9u); ++count) { auto notification = receiver_.get_notification().second; if (is_stem) EXPECT_EQ(txs, notification.txs); else EXPECT_EQ(sorted_txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_EQ(!is_stem, notification.dandelionpp_fluff); } has_stemmed |= is_stem; has_fluffed |= !is_stem; notifier.run_epoch(); } } TEST_F(levin_notify, block_without_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_FALSE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::block)); io_service_.reset(); ASSERT_EQ(0u, io_service_.poll()); } } TEST_F(levin_notify, none_without_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_FALSE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::none)); io_service_.reset(); ASSERT_EQ(0u, io_service_.poll()); } } TEST_F(levin_notify, fluff_with_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, true); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'f'); txs[1].resize(200, 'e'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::fluff)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); notifier.run_fluff(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::fluff)); std::sort(txs.begin(), txs.end()); EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) EXPECT_EQ(1u, context->process_send_queue()); ASSERT_EQ(9u, receiver_.notified_size()); for (unsigned count = 0; count < 9; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_FALSE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } } TEST_F(levin_notify, stem_with_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, true); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); bool has_stemmed = false; bool has_fluffed = false; while (!has_stemmed || !has_fluffed) { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::stem)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); const bool is_stem = events_.has_stem_txes(); EXPECT_EQ(txs, events_.take_relayed(is_stem ? cryptonote::relay_method::stem : cryptonote::relay_method::fluff)); if (!is_stem) { notifier.run_fluff(); ASSERT_LT(0u, io_service_.poll()); } std::size_t send_count = 0; EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const std::size_t sent = context->process_send_queue(); if (sent && is_stem) { EXPECT_EQ(1u, (context - contexts_.begin()) % 2); EXPECT_FALSE(context->is_incoming()); } send_count += sent; } EXPECT_EQ(is_stem ? 1u : 9u, send_count); ASSERT_EQ(is_stem ? 1u : 9u, receiver_.notified_size()); for (unsigned count = 0; count < (is_stem ? 1u : 9u); ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_FALSE(notification._.empty()); EXPECT_EQ(!is_stem, notification.dandelionpp_fluff); } has_stemmed |= is_stem; has_fluffed |= !is_stem; notifier.run_epoch(); } } TEST_F(levin_notify, stem_no_outs_with_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, true); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(true); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'f'); txs[1].resize(200, 'e'); std::vector sorted_txs = txs; std::sort(sorted_txs.begin(), sorted_txs.end()); ASSERT_EQ(10u, contexts_.size()); auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::stem)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::fluff)); if (events_.has_stem_txes()) { EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::stem)); } notifier.run_fluff(); ASSERT_LT(0u, io_service_.poll()); std::size_t send_count = 0; EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { send_count += context->process_send_queue(); } EXPECT_EQ(9u, send_count); ASSERT_EQ(9u, receiver_.notified_size()); for (unsigned count = 0; count < 9u; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(sorted_txs, notification.txs); EXPECT_FALSE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } TEST_F(levin_notify, local_with_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, true); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector my_txs(2); my_txs[0].resize(100, 'e'); my_txs[1].resize(200, 'f'); std::vector their_txs{2}; their_txs[0].resize(300, 'g'); their_txs[1].resize(250, 'h'); ASSERT_EQ(10u, contexts_.size()); bool has_stemmed = false; bool has_fluffed = false; while (!has_stemmed || !has_fluffed) { // run their "their" txes first auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(their_txs, context->get_id(), cryptonote::relay_method::stem)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); const bool is_stem = events_.has_stem_txes(); EXPECT_EQ(their_txs, events_.take_relayed(is_stem ? cryptonote::relay_method::stem : cryptonote::relay_method::fluff)); if (!is_stem) { notifier.run_fluff(); ASSERT_LT(0u, io_service_.poll()); } std::size_t send_count = 0; EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const std::size_t sent = context->process_send_queue(); if (sent && is_stem) { EXPECT_EQ(1u, (context - contexts_.begin()) % 2); EXPECT_FALSE(context->is_incoming()); } send_count += sent; } EXPECT_EQ(is_stem ? 1u : 9u, send_count); ASSERT_EQ(is_stem ? 1u : 9u, receiver_.notified_size()); for (unsigned count = 0; count < (is_stem ? 1u : 9u); ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(their_txs, notification.txs); EXPECT_FALSE(notification._.empty()); EXPECT_EQ(!is_stem, notification.dandelionpp_fluff); } // run "my" txes which must always be stem context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(my_txs, context->get_id(), cryptonote::relay_method::local)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_TRUE(events_.has_stem_txes()); EXPECT_EQ(my_txs, events_.take_relayed(cryptonote::relay_method::stem)); send_count = 0; EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const std::size_t sent = context->process_send_queue(); if (sent) { EXPECT_EQ(1u, (context - contexts_.begin()) % 2); } send_count += sent; } EXPECT_EQ(1u, send_count); EXPECT_EQ(1u, receiver_.notified_size()); auto notification = receiver_.get_notification().second; EXPECT_EQ(my_txs, notification.txs); EXPECT_FALSE(notification._.empty()); EXPECT_TRUE(!notification.dandelionpp_fluff); has_stemmed |= is_stem; has_fluffed |= !is_stem; notifier.run_epoch(); } } TEST_F(levin_notify, forward_with_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, true); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); bool has_stemmed = false; bool has_fluffed = false; while (!has_stemmed || !has_fluffed) { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::forward)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); const bool is_stem = events_.has_stem_txes(); EXPECT_EQ(txs, events_.take_relayed(is_stem ? cryptonote::relay_method::stem : cryptonote::relay_method::fluff)); if (!is_stem) { notifier.run_fluff(); ASSERT_LT(0u, io_service_.poll()); } std::size_t send_count = 0; EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const std::size_t sent = context->process_send_queue(); if (sent && is_stem) { EXPECT_EQ(1u, (context - contexts_.begin()) % 2); EXPECT_FALSE(context->is_incoming()); } send_count += sent; } EXPECT_EQ(is_stem ? 1u : 9u, send_count); ASSERT_EQ(is_stem ? 1u : 9u, receiver_.notified_size()); for (unsigned count = 0; count < (is_stem ? 1u : 9u); ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_FALSE(notification._.empty()); EXPECT_EQ(!is_stem, notification.dandelionpp_fluff); } has_stemmed |= is_stem; has_fluffed |= !is_stem; notifier.run_epoch(); } } TEST_F(levin_notify, block_with_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, true); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_FALSE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::block)); io_service_.reset(); ASSERT_EQ(0u, io_service_.poll()); } } TEST_F(levin_notify, none_with_padding) { std::shared_ptr notifier_ptr = make_notifier(0, true, true); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_FALSE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::none)); io_service_.reset(); ASSERT_EQ(0u, io_service_.poll()); } } TEST_F(levin_notify, private_fluff_without_padding) { std::shared_ptr notifier_ptr = make_notifier(0, false, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::fluff)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); notifier.run_fluff(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::fluff)); EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const bool is_incoming = ((context - contexts_.begin()) % 2 == 0); EXPECT_EQ(is_incoming ? 0u : 1u, context->process_send_queue()); } ASSERT_EQ(5u, receiver_.notified_size()); for (unsigned count = 0; count < 5; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } } TEST_F(levin_notify, private_stem_without_padding) { // private mode always uses fluff but marked as stem std::shared_ptr notifier_ptr = make_notifier(0, false, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::stem)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); notifier.run_fluff(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::stem)); EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const bool is_incoming = ((context - contexts_.begin()) % 2 == 0); EXPECT_EQ(is_incoming ? 0u : 1u, context->process_send_queue()); } ASSERT_EQ(5u, receiver_.notified_size()); for (unsigned count = 0; count < 5; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } } TEST_F(levin_notify, private_local_without_padding) { // private mode always uses fluff but marked as stem std::shared_ptr notifier_ptr = make_notifier(0, false, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::local)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); notifier.run_fluff(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::local)); EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const bool is_incoming = ((context - contexts_.begin()) % 2 == 0); EXPECT_EQ(is_incoming ? 0u : 1u, context->process_send_queue()); } ASSERT_EQ(5u, receiver_.notified_size()); for (unsigned count = 0; count < 5; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } } TEST_F(levin_notify, private_forward_without_padding) { // private mode always uses fluff but marked as stem std::shared_ptr notifier_ptr = make_notifier(0, false, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::forward)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); notifier.run_fluff(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::forward)); EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const bool is_incoming = ((context - contexts_.begin()) % 2 == 0); EXPECT_EQ(is_incoming ? 0u : 1u, context->process_send_queue()); } ASSERT_EQ(5u, receiver_.notified_size()); for (unsigned count = 0; count < 5; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } } TEST_F(levin_notify, private_block_without_padding) { // private mode always uses fluff but marked as stem std::shared_ptr notifier_ptr = make_notifier(0, false, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_FALSE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::block)); io_service_.reset(); ASSERT_EQ(0u, io_service_.poll()); } } TEST_F(levin_notify, private_none_without_padding) { // private mode always uses fluff but marked as stem std::shared_ptr notifier_ptr = make_notifier(0, false, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_FALSE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::none)); io_service_.reset(); ASSERT_EQ(0u, io_service_.poll()); } } TEST_F(levin_notify, private_fluff_with_padding) { std::shared_ptr notifier_ptr = make_notifier(0, false, true); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::fluff)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); notifier.run_fluff(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::fluff)); EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const bool is_incoming = ((context - contexts_.begin()) % 2 == 0); EXPECT_EQ(is_incoming ? 0u : 1u, context->process_send_queue()); } ASSERT_EQ(5u, receiver_.notified_size()); for (unsigned count = 0; count < 5; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_FALSE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } } TEST_F(levin_notify, private_stem_with_padding) { std::shared_ptr notifier_ptr = make_notifier(0, false, true); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::stem)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); notifier.run_fluff(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::stem)); EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const bool is_incoming = ((context - contexts_.begin()) % 2 == 0); EXPECT_EQ(is_incoming ? 0u : 1u, context->process_send_queue()); } ASSERT_EQ(5u, receiver_.notified_size()); for (unsigned count = 0; count < 5; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_FALSE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } } TEST_F(levin_notify, private_local_with_padding) { std::shared_ptr notifier_ptr = make_notifier(0, false, true); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::local)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); notifier.run_fluff(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::local)); EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const bool is_incoming = ((context - contexts_.begin()) % 2 == 0); EXPECT_EQ(is_incoming ? 0u : 1u, context->process_send_queue()); } ASSERT_EQ(5u, receiver_.notified_size()); for (unsigned count = 0; count < 5; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_FALSE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } } TEST_F(levin_notify, private_forward_with_padding) { std::shared_ptr notifier_ptr = make_notifier(0, false, true); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::forward)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); notifier.run_fluff(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::forward)); EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const bool is_incoming = ((context - contexts_.begin()) % 2 == 0); EXPECT_EQ(is_incoming ? 0u : 1u, context->process_send_queue()); } ASSERT_EQ(5u, receiver_.notified_size()); for (unsigned count = 0; count < 5; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_FALSE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } } TEST_F(levin_notify, private_block_with_padding) { std::shared_ptr notifier_ptr = make_notifier(0, false, true); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_FALSE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::block)); io_service_.reset(); ASSERT_EQ(0u, io_service_.poll()); } } TEST_F(levin_notify, private_none_with_padding) { std::shared_ptr notifier_ptr = make_notifier(0, false, true); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(10u, contexts_.size()); { auto context = contexts_.begin(); EXPECT_FALSE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::none)); io_service_.reset(); ASSERT_EQ(0u, io_service_.poll()); } } TEST_F(levin_notify, stem_mappings) { static constexpr const unsigned test_connections_count = (CRYPTONOTE_DANDELIONPP_STEMS + 1) * 2; std::shared_ptr notifier_ptr = make_notifier(0, true, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < test_connections_count; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(test_connections_count, contexts_.size()); for (;;) { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::stem)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); if (events_.has_stem_txes()) break; EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::fluff)); notifier.run_fluff(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) EXPECT_EQ(1u, context->process_send_queue()); ASSERT_EQ(test_connections_count - 1, receiver_.notified_size()); for (unsigned count = 0; count < test_connections_count - 1; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } notifier.run_epoch(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); } EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::stem)); std::set used; std::map mappings; { std::size_t send_count = 0; for (auto context = contexts_.begin(); context != contexts_.end(); ++context) { const std::size_t sent = context->process_send_queue(); if (sent) { EXPECT_EQ(1u, (context - contexts_.begin()) % 2); EXPECT_FALSE(context->is_incoming()); used.insert(context->get_id()); mappings[contexts_.front().get_id()] = context->get_id(); } send_count += sent; } EXPECT_EQ(1u, send_count); ASSERT_EQ(1u, receiver_.notified_size()); for (unsigned count = 0; count < 1u; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_FALSE(notification.dandelionpp_fluff); } } for (unsigned i = 0; i < contexts_.size() * 2; i += 2) { auto& incoming = contexts_[i % contexts_.size()]; EXPECT_TRUE(notifier.send_txs(txs, incoming.get_id(), cryptonote::relay_method::stem)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::stem)); std::size_t send_count = 0; for (auto context = contexts_.begin(); context != contexts_.end(); ++context) { const std::size_t sent = context->process_send_queue(); if (sent) { EXPECT_EQ(1u, (context - contexts_.begin()) % 2); EXPECT_FALSE(context->is_incoming()); used.insert(context->get_id()); auto inserted = mappings.emplace(incoming.get_id(), context->get_id()).first; EXPECT_EQ(inserted->second, context->get_id()) << "incoming index " << i; } send_count += sent; } EXPECT_EQ(1u, send_count); ASSERT_EQ(1u, receiver_.notified_size()); for (unsigned count = 0; count < 1u; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_FALSE(notification.dandelionpp_fluff); } } EXPECT_EQ(CRYPTONOTE_DANDELIONPP_STEMS, used.size()); } TEST_F(levin_notify, fluff_multiple) { static constexpr const unsigned test_connections_count = (CRYPTONOTE_DANDELIONPP_STEMS + 1) * 2; std::shared_ptr notifier_ptr = make_notifier(0, true, false); auto ¬ifier = *notifier_ptr; for (unsigned count = 0; count < test_connections_count; ++count) add_connection(count % 2 == 0); { const auto status = notifier.get_status(); EXPECT_FALSE(status.has_noise); EXPECT_FALSE(status.connections_filled); } notifier.new_out_connection(); io_service_.poll(); std::vector txs(2); txs[0].resize(100, 'e'); txs[1].resize(200, 'f'); ASSERT_EQ(test_connections_count, contexts_.size()); for (;;) { auto context = contexts_.begin(); EXPECT_TRUE(notifier.send_txs(txs, context->get_id(), cryptonote::relay_method::stem)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); if (!events_.has_stem_txes()) break; EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::stem)); std::size_t send_count = 0; EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) { const std::size_t sent = context->process_send_queue(); if (sent) { EXPECT_EQ(1u, (context - contexts_.begin()) % 2); EXPECT_FALSE(context->is_incoming()); } send_count += sent; } EXPECT_EQ(1u, send_count); ASSERT_EQ(1u, receiver_.notified_size()); for (unsigned count = 0; count < 1; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_FALSE(notification.dandelionpp_fluff); } notifier.run_epoch(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); } EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::fluff)); notifier.run_fluff(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); { auto context = contexts_.begin(); EXPECT_EQ(0u, context->process_send_queue()); for (++context; context != contexts_.end(); ++context) EXPECT_EQ(1u, context->process_send_queue()); ASSERT_EQ(contexts_.size() - 1, receiver_.notified_size()); for (unsigned count = 0; count < contexts_.size() - 1; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } for (unsigned i = 0; i < contexts_.size() * 2; i += 2) { auto& incoming = contexts_[i % contexts_.size()]; EXPECT_TRUE(notifier.send_txs(txs, incoming.get_id(), cryptonote::relay_method::stem)); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); notifier.run_fluff(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::fluff)); for (auto& context : contexts_) { if (std::addressof(incoming) == std::addressof(context)) EXPECT_EQ(0u, context.process_send_queue()); else EXPECT_EQ(1u, context.process_send_queue()); } ASSERT_EQ(contexts_.size() - 1, receiver_.notified_size()); for (unsigned count = 0; count < contexts_.size() - 1; ++count) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_TRUE(notification.dandelionpp_fluff); } } } TEST_F(levin_notify, noise) { for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); std::vector txs(1); txs[0].resize(1900, 'h'); const boost::uuids::uuid incoming_id = random_generator_(); std::shared_ptr notifier_ptr = make_notifier(2048, false, true); auto ¬ifier = *notifier_ptr; { const auto status = notifier.get_status(); EXPECT_TRUE(status.has_noise); EXPECT_FALSE(status.connections_filled); } ASSERT_LT(0u, io_service_.poll()); { const auto status = notifier.get_status(); EXPECT_TRUE(status.has_noise); EXPECT_TRUE(status.connections_filled); } notifier.run_stems(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); { std::size_t sent = 0; for (auto& context : contexts_) sent += context.process_send_queue(); EXPECT_EQ(2u, sent); EXPECT_EQ(0u, receiver_.notified_size()); } EXPECT_TRUE(notifier.send_txs(txs, incoming_id, cryptonote::relay_method::local)); notifier.run_stems(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::local)); { std::size_t sent = 0; for (auto& context : contexts_) sent += context.process_send_queue(); ASSERT_EQ(2u, sent); while (sent--) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_FALSE(notification.dandelionpp_fluff); } } txs[0].resize(3000, 'r'); EXPECT_TRUE(notifier.send_txs(txs, incoming_id, cryptonote::relay_method::fluff)); notifier.run_stems(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::fluff)); { std::size_t sent = 0; for (auto& context : contexts_) sent += context.process_send_queue(); EXPECT_EQ(2u, sent); EXPECT_EQ(0u, receiver_.notified_size()); } notifier.run_stems(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); { std::size_t sent = 0; for (auto& context : contexts_) sent += context.process_send_queue(); ASSERT_EQ(2u, sent); while (sent--) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_FALSE(notification.dandelionpp_fluff); } } } TEST_F(levin_notify, noise_stem) { for (unsigned count = 0; count < 10; ++count) add_connection(count % 2 == 0); std::vector txs(1); txs[0].resize(1900, 'h'); const boost::uuids::uuid incoming_id = random_generator_(); std::shared_ptr notifier_ptr = make_notifier(2048, false, true); auto ¬ifier = *notifier_ptr; { const auto status = notifier.get_status(); EXPECT_TRUE(status.has_noise); EXPECT_FALSE(status.connections_filled); } ASSERT_LT(0u, io_service_.poll()); { const auto status = notifier.get_status(); EXPECT_TRUE(status.has_noise); EXPECT_TRUE(status.connections_filled); } notifier.run_stems(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); { std::size_t sent = 0; for (auto& context : contexts_) sent += context.process_send_queue(); EXPECT_EQ(2u, sent); EXPECT_EQ(0u, receiver_.notified_size()); } EXPECT_TRUE(notifier.send_txs(txs, incoming_id, cryptonote::relay_method::stem)); notifier.run_stems(); io_service_.reset(); ASSERT_LT(0u, io_service_.poll()); // downgraded to local when being notified EXPECT_EQ(txs, events_.take_relayed(cryptonote::relay_method::local)); { std::size_t sent = 0; for (auto& context : contexts_) sent += context.process_send_queue(); ASSERT_EQ(2u, sent); while (sent--) { auto notification = receiver_.get_notification().second; EXPECT_EQ(txs, notification.txs); EXPECT_TRUE(notification._.empty()); EXPECT_FALSE(notification.dandelionpp_fluff); } } } TEST_F(levin_notify, command_max_bytes) { static constexpr int ping_command = nodetool::COMMAND_PING::ID; add_connection(true); std::string payload(4096, 'h'); epee::byte_slice bytes; { epee::levin::message_writer dest{}; dest.buffer.write(epee::to_span(payload)); bytes = dest.finalize_notify(ping_command); } EXPECT_EQ(1, get_connections().send(bytes.clone(), contexts_.front().get_id())); EXPECT_EQ(1u, contexts_.front().process_send_queue(true)); EXPECT_EQ(1u, receiver_.notified_size()); const received_message msg = receiver_.get_raw_notification(); EXPECT_EQ(ping_command, msg.command); EXPECT_EQ(contexts_.front().get_id(), msg.connection); EXPECT_EQ(payload, msg.payload); { payload.push_back('h'); epee::levin::message_writer dest{}; dest.buffer.write(epee::to_span(payload)); bytes = dest.finalize_notify(ping_command); } EXPECT_EQ(1, get_connections().send(std::move(bytes), contexts_.front().get_id())); EXPECT_EQ(1u, contexts_.front().process_send_queue(false)); EXPECT_EQ(0u, receiver_.notified_size()); }