Arbitrary M/N multisig schemes:

* support in wallet2
* support in monero-wallet-cli
* support in monero-wallet-rpc
* support in wallet api
* support in monero-gen-trusted-multisig
* unit tests for multisig wallets creation
pull/127/head
naughtyfox 6 years ago
parent 8bf5a00564
commit 9f3963e823

@ -130,8 +130,8 @@ static bool generate_multisig(uint32_t threshold, uint32_t total, const std::str
ss << " " << name << std::endl;
}
// finalize step if needed
if (!extra_info[0].empty())
//exchange keys unless exchange_multisig_keys returns no extra info
while (!extra_info[0].empty())
{
std::unordered_set<crypto::public_key> pkeys;
std::vector<crypto::public_key> signers(total);
@ -145,11 +145,7 @@ static bool generate_multisig(uint32_t threshold, uint32_t total, const std::str
}
for (size_t n = 0; n < total; ++n)
{
if (!wallets[n]->finalize_multisig(pwd_container->password(), pkeys, signers))
{
tools::fail_msg_writer() << genms::tr("Error finalizing multisig");
return false;
}
extra_info[n] = wallets[n]->exchange_multisig_keys(pwd_container->password(), pkeys, signers);
}
}
@ -244,11 +240,6 @@ int main(int argc, char* argv[])
return 1;
}
if (threshold != total-1 && threshold != total)
{
tools::fail_msg_writer() << genms::tr("Error: unsupported scheme: only N/N and N-1/N are supported");
return 1;
}
bool create_address_file = command_line::get_arg(*vm, arg_create_address_file);
if (!generate_multisig(threshold, total, basename, testnet ? TESTNET : stagenet ? STAGENET : MAINNET, create_address_file))
return 1;

@ -84,6 +84,43 @@ namespace cryptonote
}
}
//-----------------------------------------------------------------
std::vector<crypto::public_key> generate_multisig_derivations(const account_keys &keys, const std::vector<crypto::public_key> &derivations)
{
std::vector<crypto::public_key> multisig_keys;
crypto::secret_key blinded_skey = get_multisig_blinded_secret_key(keys.m_spend_secret_key);
for (const auto &k: derivations)
{
rct::key d = rct::scalarmultKey(rct::pk2rct(k), rct::sk2rct(blinded_skey));
multisig_keys.push_back(rct::rct2pk(d));
}
return multisig_keys;
}
//-----------------------------------------------------------------
crypto::secret_key calculate_multisig_signer_key(const std::vector<crypto::secret_key>& multisig_keys)
{
rct::key secret_key = rct::zero();
for (const auto &k: multisig_keys)
{
sc_add(secret_key.bytes, secret_key.bytes, (const unsigned char*)k.data);
}
return rct::rct2sk(secret_key);
}
//-----------------------------------------------------------------
std::vector<crypto::secret_key> calculate_multisig_keys(const std::vector<crypto::public_key>& derivations)
{
std::vector<crypto::secret_key> multisig_keys;
multisig_keys.reserve(derivations.size());
for (const auto &k: derivations)
{
multisig_keys.emplace_back(get_multisig_blinded_secret_key(rct::rct2sk(rct::pk2rct(k))));
}
return multisig_keys;
}
//-----------------------------------------------------------------
crypto::secret_key generate_multisig_view_secret_key(const crypto::secret_key &skey, const std::vector<crypto::secret_key> &skeys)
{
rct::key view_skey = rct::sk2rct(get_multisig_blinded_secret_key(skey));
@ -92,7 +129,7 @@ namespace cryptonote
return rct::rct2sk(view_skey);
}
//-----------------------------------------------------------------
crypto::public_key generate_multisig_N1_N_spend_public_key(const std::vector<crypto::public_key> &pkeys)
crypto::public_key generate_multisig_M_N_spend_public_key(const std::vector<crypto::public_key> &pkeys)
{
rct::key spend_public_key = rct::identity();
for (const auto &pk: pkeys)
@ -141,4 +178,9 @@ namespace cryptonote
return true;
}
//-----------------------------------------------------------------
uint32_t multisig_rounds_required(uint32_t participants, uint32_t threshold)
{
CHECK_AND_ASSERT_THROW_MES(participants >= threshold, "participants must be greater or equal than threshold");
return participants - threshold + 1;
}
}

@ -41,9 +41,31 @@ namespace cryptonote
crypto::secret_key get_multisig_blinded_secret_key(const crypto::secret_key &key);
void generate_multisig_N_N(const account_keys &keys, const std::vector<crypto::public_key> &spend_keys, std::vector<crypto::secret_key> &multisig_keys, rct::key &spend_skey, rct::key &spend_pkey);
void generate_multisig_N1_N(const account_keys &keys, const std::vector<crypto::public_key> &spend_keys, std::vector<crypto::secret_key> &multisig_keys, rct::key &spend_skey, rct::key &spend_pkey);
/**
* @brief generate_multisig_derivations performs common DH key derivation.
* Each middle round in M/N scheme is DH exchange of public multisig keys of other participants multiplied by secret spend key of current participant.
* this functions does the following: new multisig key = secret spend * public multisig key
* @param keys - current wallet's keys
* @param derivations - public multisig keys of other participants
* @return new public multisig keys derived from previous round. This data needs to be exchange with other participants
*/
std::vector<crypto::public_key> generate_multisig_derivations(const account_keys &keys, const std::vector<crypto::public_key> &derivations);
crypto::secret_key calculate_multisig_signer_key(const std::vector<crypto::secret_key>& derivations);
/**
* @brief calculate_multisig_keys. Calculates secret multisig keys from others' participants ones as follows: mi = H(Mi)
* @param derivations - others' participants public multisig keys.
* @return vector of current wallet's multisig secret keys
*/
std::vector<crypto::secret_key> calculate_multisig_keys(const std::vector<crypto::public_key>& derivations);
crypto::secret_key generate_multisig_view_secret_key(const crypto::secret_key &skey, const std::vector<crypto::secret_key> &skeys);
crypto::public_key generate_multisig_N1_N_spend_public_key(const std::vector<crypto::public_key> &pkeys);
/**
* @brief generate_multisig_M_N_spend_public_key calculates multisig wallet's spend public key by summing all of public multisig keys
* @param pkeys unique public multisig keys
* @return multisig wallet's spend public key
*/
crypto::public_key generate_multisig_M_N_spend_public_key(const std::vector<crypto::public_key> &pkeys);
bool generate_multisig_key_image(const account_keys &keys, size_t multisig_key_index, const crypto::public_key& out_key, crypto::key_image& ki);
void generate_multisig_LR(const crypto::public_key pkey, const crypto::secret_key &k, crypto::public_key &L, crypto::public_key &R);
bool generate_multisig_composite_key_image(const account_keys &keys, const std::unordered_map<crypto::public_key, cryptonote::subaddress_index>& subaddresses, const crypto::public_key& out_key, const crypto::public_key &tx_public_key, const std::vector<crypto::public_key>& additional_tx_public_keys, size_t real_output_index, const std::vector<crypto::key_image> &pkis, crypto::key_image &ki);
uint32_t multisig_rounds_required(uint32_t participants, uint32_t threshold);
}

@ -968,7 +968,7 @@ bool simple_wallet::make_multisig(const std::vector<std::string> &args)
{
success_msg_writer() << tr("Another step is needed");
success_msg_writer() << multisig_extra_info;
success_msg_writer() << tr("Send this multisig info to all other participants, then use finalize_multisig <info1> [<info2>...] with others' multisig info");
success_msg_writer() << tr("Send this multisig info to all other participants, then use exchange_multisig_keys <info1> [<info2>...] with others' multisig info");
return true;
}
}
@ -1042,6 +1042,61 @@ bool simple_wallet::finalize_multisig(const std::vector<std::string> &args)
return true;
}
bool simple_wallet::exchange_multisig_keys(const std::vector<std::string> &args) {
bool ready;
if (m_wallet->key_on_device())
{
fail_msg_writer() << tr("command not supported by HW wallet");
return true;
}
if (!m_wallet->multisig(&ready))
{
fail_msg_writer() << tr("This wallet is not multisig");
return true;
}
if (ready)
{
fail_msg_writer() << tr("This wallet is already finalized");
return true;
}
const auto orig_pwd_container = get_and_verify_password();
if(orig_pwd_container == boost::none)
{
fail_msg_writer() << tr("Your original password was incorrect.");
return true;
}
if (args.size() < 2)
{
fail_msg_writer() << tr("usage: exchange_multisig_keys <multisiginfo1> [<multisiginfo2>...]");
return true;
}
try
{
std::string multisig_extra_info = m_wallet->exchange_multisig_keys(orig_pwd_container->password(), args);
if (!multisig_extra_info.empty())
{
message_writer() << tr("Another step is needed");
message_writer() << multisig_extra_info;
message_writer() << tr("Send this multisig info to all other participants, then use exchange_multisig_keys <info1> [<info2>...] with others' multisig info");
return true;
} else {
uint32_t threshold, total;
m_wallet->multisig(NULL, &threshold, &total);
success_msg_writer() << tr("Multisig wallet has been successfully created. Current wallet type: ") << threshold << "/" << total;
}
}
catch (const std::exception &e)
{
fail_msg_writer() << tr("Failed to perform multisig keys exchange: ") << e.what();
return true;
}
return true;
}
bool simple_wallet::export_multisig(const std::vector<std::string> &args)
{
bool ready;
@ -2552,6 +2607,10 @@ simple_wallet::simple_wallet()
boost::bind(&simple_wallet::finalize_multisig, this, _1),
tr("finalize_multisig <string> [<string>...]"),
tr("Turn this wallet into a multisig wallet, extra step for N-1/N wallets"));
m_cmd_binder.set_handler("exchange_multisig_keys",
boost::bind(&simple_wallet::exchange_multisig_keys, this, _1),
tr("exchange_multisig_keys <string> [<string>...]"),
tr("Performs extra multisig keys exchange rounds. Needed for arbitrary M/N multisig wallets"));
m_cmd_binder.set_handler("export_multisig_info",
boost::bind(&simple_wallet::export_multisig, this, _1),
tr("export_multisig_info <filename>"),

@ -210,6 +210,7 @@ namespace cryptonote
bool prepare_multisig(const std::vector<std::string>& args);
bool make_multisig(const std::vector<std::string>& args);
bool finalize_multisig(const std::vector<std::string> &args);
bool exchange_multisig_keys(const std::vector<std::string> &args);
bool export_multisig(const std::vector<std::string>& args);
bool import_multisig(const std::vector<std::string>& args);
bool accept_loaded_tx(const tools::wallet2::multisig_tx_set &txs);

@ -1187,6 +1187,20 @@ string WalletImpl::makeMultisig(const vector<string>& info, uint32_t threshold)
return string();
}
std::string WalletImpl::exchangeMultisigKeys(const std::vector<std::string> &info) {
try {
clearStatus();
checkMultisigWalletNotReady(m_wallet);
return m_wallet->exchange_multisig_keys(epee::wipeable_string(m_password), info);
} catch (const exception& e) {
LOG_ERROR("Error on exchanging multisig keys: ") << e.what();
setStatusError(string(tr("Failed to make multisig: ")) + e.what());
}
return string();
}
bool WalletImpl::finalizeMultisig(const vector<string>& extraMultisigInfo) {
try {
clearStatus();

@ -137,6 +137,7 @@ public:
MultisigState multisig() const override;
std::string getMultisigInfo() const override;
std::string makeMultisig(const std::vector<std::string>& info, uint32_t threshold) override;
std::string exchangeMultisigKeys(const std::vector<std::string> &info) override;
bool finalizeMultisig(const std::vector<std::string>& extraMultisigInfo) override;
bool exportMultisigImages(std::string& images) override;
size_t importMultisigImages(const std::vector<std::string>& images) override;

@ -706,6 +706,12 @@ struct Wallet
* @return in case of N / N wallets returns empty string since no more key exchanges needed. For N - 1 / N wallets returns base58 encoded extra multisig info
*/
virtual std::string makeMultisig(const std::vector<std::string>& info, uint32_t threshold) = 0;
/**
* @brief exchange_multisig_keys - provides additional key exchange round for arbitrary multisig schemes (like N-1/N, M/N)
* @param info - base58 encoded key derivations returned by makeMultisig or exchangeMultisigKeys function call
* @return new info string if more rounds required or an empty string if wallet creation is done
*/
virtual std::string exchangeMultisigKeys(const std::vector<std::string> &info) = 0;
/**
* @brief finalizeMultisig - finalizes N - 1 / N multisig wallets creation
* @param extraMultisigInfo - wallet participants' extra multisig info obtained with makeMultisig call

@ -121,6 +121,7 @@ using namespace cryptonote;
#define FIRST_REFRESH_GRANULARITY 1024
static const std::string MULTISIG_SIGNATURE_MAGIC = "SigMultisigPkV1";
static const std::string MULTISIG_EXTRA_INFO_MAGIC = "MultisigxV1";
namespace
{
@ -132,6 +133,42 @@ namespace
dir /= ".shared-ringdb";
return dir.string();
}
std::string pack_multisignature_keys(const std::string& prefix, const std::vector<crypto::public_key>& keys, const crypto::secret_key& signer_secret_key)
{
std::string data;
crypto::public_key signer;
CHECK_AND_ASSERT_THROW_MES(crypto::secret_key_to_public_key(signer_secret_key, signer), "Failed to derive public spend key");
data += std::string((const char *)&signer, sizeof(crypto::public_key));
for (const auto &key: keys)
{
data += std::string((const char *)&key, sizeof(crypto::public_key));
}
data.resize(data.size() + sizeof(crypto::signature));
crypto::hash hash;
crypto::cn_fast_hash(data.data(), data.size() - sizeof(crypto::signature), hash);
crypto::signature &signature = *(crypto::signature*)&data[data.size() - sizeof(crypto::signature)];
crypto::generate_signature(hash, signer, signer_secret_key, signature);
return MULTISIG_EXTRA_INFO_MAGIC + tools::base58::encode(data);
}
std::vector<crypto::public_key> secret_keys_to_public_keys(const std::vector<crypto::secret_key>& keys)
{
std::vector<crypto::public_key> public_keys;
public_keys.reserve(keys.size());
std::transform(keys.begin(), keys.end(), std::back_inserter(public_keys), [] (const crypto::secret_key& k) -> crypto::public_key {
crypto::public_key p;
CHECK_AND_ASSERT_THROW_MES(crypto::secret_key_to_public_key(k, p), "Failed to derive public spend key");
return p;
});
return public_keys;
}
}
namespace
@ -758,6 +795,7 @@ wallet2::wallet2(network_type nettype, uint64_t kdf_rounds, bool unattended):
m_callback(0),
m_trusted_daemon(false),
m_nettype(nettype),
m_multisig_rounds_passed(0),
m_always_confirm_transfers(true),
m_print_ring_members(false),
m_store_tx_info(true),
@ -2885,6 +2923,7 @@ bool wallet2::clear()
m_address_book.clear();
m_subaddresses.clear();
m_subaddress_labels.clear();
m_multisig_rounds_passed = 0;
return true;
}
@ -2899,6 +2938,7 @@ bool wallet2::store_keys(const std::string& keys_file_name, const epee::wipeable
{
std::string account_data;
std::string multisig_signers;
std::string multisig_derivations;
cryptonote::account_base account = m_account;
crypto::chacha_key key;
@ -2951,6 +2991,14 @@ bool wallet2::store_keys(const std::string& keys_file_name, const epee::wipeable
CHECK_AND_ASSERT_MES(r, false, "failed to serialize wallet multisig signers");
value.SetString(multisig_signers.c_str(), multisig_signers.length());
json.AddMember("multisig_signers", value, json.GetAllocator());
r = ::serialization::dump_binary(m_multisig_derivations, multisig_derivations);
CHECK_AND_ASSERT_MES(r, false, "failed to serialize wallet multisig derivations");
value.SetString(multisig_derivations.c_str(), multisig_derivations.length());
json.AddMember("multisig_derivations", value, json.GetAllocator());
value2.SetUint(m_multisig_rounds_passed);
json.AddMember("multisig_rounds_passed", value2, json.GetAllocator());
}
value2.SetInt(m_always_confirm_transfers ? 1 :0);
@ -3123,6 +3171,8 @@ bool wallet2::load_keys(const std::string& keys_file_name, const epee::wipeable_
m_multisig = false;
m_multisig_threshold = 0;
m_multisig_signers.clear();
m_multisig_rounds_passed = 0;
m_multisig_derivations.clear();
m_always_confirm_transfers = false;
m_print_ring_members = false;
m_default_mixin = 0;
@ -3181,6 +3231,8 @@ bool wallet2::load_keys(const std::string& keys_file_name, const epee::wipeable_
m_multisig = field_multisig;
GET_FIELD_FROM_JSON_RETURN_ON_ERROR(json, multisig_threshold, unsigned int, Uint, m_multisig, 0);
m_multisig_threshold = field_multisig_threshold;
GET_FIELD_FROM_JSON_RETURN_ON_ERROR(json, multisig_rounds_passed, unsigned int, Uint, false, 0);
m_multisig_rounds_passed = field_multisig_rounds_passed;
if (m_multisig)
{
if (!json.HasMember("multisig_signers"))
@ -3201,6 +3253,24 @@ bool wallet2::load_keys(const std::string& keys_file_name, const epee::wipeable_
LOG_ERROR("Field multisig_signers found in JSON, but failed to parse");
return false;
}
//previous version of multisig does not have this field
if (json.HasMember("multisig_derivations"))
{
if (!json["multisig_derivations"].IsString())
{
LOG_ERROR("Field multisig_derivations found in JSON, but not String");
return false;
}
const char *field_multisig_derivations = json["multisig_derivations"].GetString();
std::string multisig_derivations = std::string(field_multisig_derivations, field_multisig_derivations + json["multisig_derivations"].GetStringLength());
r = ::serialization::parse_binary(multisig_derivations, m_multisig_derivations);
if (!r)
{
LOG_ERROR("Field multisig_derivations found in JSON, but failed to parse");
return false;
}
}
}
GET_FIELD_FROM_JSON_RETURN_ON_ERROR(json, always_confirm_transfers, int, Int, false, true);
m_always_confirm_transfers = field_always_confirm_transfers;
@ -3829,12 +3899,12 @@ std::string wallet2::make_multisig(const epee::wipeable_string &password,
CHECK_AND_ASSERT_THROW_MES(!view_keys.empty(), "empty view keys");
CHECK_AND_ASSERT_THROW_MES(view_keys.size() == spend_keys.size(), "Mismatched view/spend key sizes");
CHECK_AND_ASSERT_THROW_MES(threshold > 1 && threshold <= spend_keys.size() + 1, "Invalid threshold");
CHECK_AND_ASSERT_THROW_MES(threshold == spend_keys.size() || threshold == spend_keys.size() + 1, "Unsupported threshold case");
std::string extra_multisig_info;
crypto::hash hash;
clear();
std::vector<crypto::secret_key> multisig_keys;
rct::key spend_pkey = rct::identity();
rct::key spend_skey;
std::vector<crypto::public_key> multisig_signers;
// decrypt keys
epee::misc_utils::auto_scope_leave_caller keys_reencryptor;
@ -3847,43 +3917,78 @@ std::string wallet2::make_multisig(const epee::wipeable_string &password,
keys_reencryptor = epee::misc_utils::create_scope_leave_handler([&, this, chacha_key]() { m_account.encrypt_keys(chacha_key); m_account.decrypt_viewkey(chacha_key); });
}
MINFO("Creating spend key...");
std::vector<crypto::secret_key> multisig_keys;
rct::key spend_pkey, spend_skey;
// In common multisig scheme there are 4 types of key exchange rounds:
// 1. First round is exchange of view secret keys and public spend keys.
// 2. Middle round is exchange of derivations: Ki = b * Mj, where b - spend secret key,
// M - public multisig key (in first round it equals to public spend key), K - new public multisig key.
// 3. Secret spend establishment round sets your secret multisig keys as follows: kl = H(Ml), where M - is *your* public multisig key,
// k - secret multisig key used to sign transactions. k and M are sets of keys, of course.
// And secret spend key as the sum of all participant's secret multisig keys
// 4. Last round establishes multisig wallet's public spend key. Participants exchange their public multisig keys
// and calculate common spend public key as sum of all unique participants' public multisig keys.
// Note that N/N scheme has only first round. N-1/N has 2 rounds: first and last. Common M/N has all 4 rounds.
// IMPORTANT: wallet's public spend key is not equal to secret_spend_key * G!
// Wallet's public spend key is the sum of unique public multisig keys of all participants.
// secret_spend_key * G = public signer key
if (threshold == spend_keys.size() + 1)
{
// In N / N case we only need to do one round and calculate secret multisig keys and new secret spend key
MINFO("Creating spend key...");
// Calculates all multisig keys and spend key
cryptonote::generate_multisig_N_N(get_account().get_keys(), spend_keys, multisig_keys, spend_skey, spend_pkey);
// Our signer key is b * G, where b is secret spend key.
multisig_signers = spend_keys;
multisig_signers.push_back(get_multisig_signer_public_key(get_account().get_keys().m_spend_secret_key));
}
else if (threshold == spend_keys.size())
else
{
cryptonote::generate_multisig_N1_N(get_account().get_keys(), spend_keys, multisig_keys, spend_skey, spend_pkey);
// We just got public spend keys of all participants and deriving multisig keys (set of Mi = b * Bi).
// note that derivations are public keys as DH exchange suppose it to be
auto derivations = cryptonote::generate_multisig_derivations(get_account().get_keys(), spend_keys);
// We need an extra step, so we package all the composite public keys
// we know about, and make a signed string out of them
std::string data;
crypto::public_key signer;
CHECK_AND_ASSERT_THROW_MES(crypto::secret_key_to_public_key(rct::rct2sk(spend_skey), signer), "Failed to derive public spend key");
data += std::string((const char *)&signer, sizeof(crypto::public_key));
spend_pkey = rct::identity();
multisig_signers = std::vector<crypto::public_key>(spend_keys.size() + 1, crypto::null_pkey);
for (const auto &msk: multisig_keys)
if (threshold == spend_keys.size())
{
rct::key pmsk = rct::scalarmultBase(rct::sk2rct(msk));
data += std::string((const char *)&pmsk, sizeof(crypto::public_key));
// N - 1 / N case
// We need an extra step, so we package all the composite public keys
// we know about, and make a signed string out of them
MINFO("Creating spend key...");
// Calculating set of our secret multisig keys as follows: mi = H(Mi),
// where mi - secret multisig key, Mi - others' participants public multisig key
multisig_keys = cryptonote::calculate_multisig_keys(derivations);
// calculating current participant's spend secret key as sum of all secret multisig keys for current participant.
// IMPORTANT: participant's secret spend key is not an entire wallet's secret spend!
// Entire wallet's secret spend is sum of all unique secret multisig keys
// among all of participants and is not held by anyone!
spend_skey = rct::sk2rct(cryptonote::calculate_multisig_signer_key(multisig_keys));
// Preparing data for the last round to calculate common public spend key. The data contains public multisig keys.
extra_multisig_info = pack_multisignature_keys(MULTISIG_EXTRA_INFO_MAGIC, secret_keys_to_public_keys(multisig_keys), rct::rct2sk(spend_skey));
}
else
{
// M / N case
MINFO("Preparing keys for next exchange round...");
data.resize(data.size() + sizeof(crypto::signature));
crypto::cn_fast_hash(data.data(), data.size() - sizeof(signature), hash);
crypto::signature &signature = *(crypto::signature*)&data[data.size() - sizeof(crypto::signature)];
crypto::generate_signature(hash, signer, rct::rct2sk(spend_skey), signature);
// Preparing data for middle round - packing new public multisig keys to exchage with others.
extra_multisig_info = pack_multisignature_keys(MULTISIG_EXTRA_INFO_MAGIC, derivations, m_account.get_keys().m_spend_secret_key);
spend_skey = rct::sk2rct(m_account.get_keys().m_spend_secret_key);
extra_multisig_info = std::string("MultisigxV1") + tools::base58::encode(data);
}
else
{
CHECK_AND_ASSERT_THROW_MES(false, "Unsupported threshold case");
// Need to store middle keys to be able to proceed in case of wallet shutdown.
m_multisig_derivations = derivations;
}
}
// the multisig view key is shared by all, make one all can derive
clear();
MINFO("Creating view key...");
crypto::secret_key view_skey = cryptonote::generate_multisig_view_secret_key(get_account().get_keys().m_view_secret_key, view_keys);
@ -3895,18 +4000,10 @@ std::string wallet2::make_multisig(const epee::wipeable_string &password,
m_account_public_address = m_account.get_keys().m_account_address;
m_watch_only = false;
m_multisig = true;
m_multisig_threshold = threshold;
m_key_device_type = hw::device::device_type::SOFTWARE;
if (threshold == spend_keys.size() + 1)
{
m_multisig_signers = spend_keys;
m_multisig_signers.push_back(get_multisig_signer_public_key());
}
else
{
m_multisig_signers = std::vector<crypto::public_key>(spend_keys.size() + 1, crypto::null_pkey);
}
m_multisig_threshold = threshold;
m_multisig_signers = multisig_signers;
++m_multisig_rounds_passed;
// re-encrypt keys
keys_reencryptor = epee::misc_utils::auto_scope_leave_caller();
@ -3921,13 +4018,147 @@ std::string wallet2::make_multisig(const epee::wipeable_string &password,
return extra_multisig_info;
}
std::string wallet2::make_multisig(const epee::wipeable_string &password,
const std::vector<std::string> &info,
uint32_t threshold)
std::string wallet2::exchange_multisig_keys(const epee::wipeable_string &password,
const std::vector<std::string> &info)
{
THROW_WALLET_EXCEPTION_IF(info.empty(),
error::wallet_internal_error, "Empty multisig info");
if (info[0].substr(0, MULTISIG_EXTRA_INFO_MAGIC.size()) != MULTISIG_EXTRA_INFO_MAGIC)
{
THROW_WALLET_EXCEPTION_IF(false,
error::wallet_internal_error, "Unsupported info string");
}
std::vector<crypto::public_key> signers;
std::unordered_set<crypto::public_key> pkeys;
THROW_WALLET_EXCEPTION_IF(!unpack_extra_multisig_info(info, signers, pkeys),
error::wallet_internal_error, "Bad extra multisig info");
return exchange_multisig_keys(password, pkeys, signers);
}
std::string wallet2::exchange_multisig_keys(const epee::wipeable_string &password,
std::unordered_set<crypto::public_key> derivations,
std::vector<crypto::public_key> signers)
{
CHECK_AND_ASSERT_THROW_MES(!derivations.empty(), "empty pkeys");
CHECK_AND_ASSERT_THROW_MES(!signers.empty(), "empty signers");
bool ready = false;
CHECK_AND_ASSERT_THROW_MES(multisig(&ready), "The wallet is not multisig");
CHECK_AND_ASSERT_THROW_MES(!ready, "Multisig wallet creation process has already been finished");
// keys are decrypted
epee::misc_utils::auto_scope_leave_caller keys_reencryptor;
if (m_ask_password == AskPasswordToDecrypt && !m_unattended && !m_watch_only)
{
crypto::chacha_key chacha_key;
crypto::generate_chacha_key(password.data(), password.size(), chacha_key, m_kdf_rounds);
m_account.encrypt_viewkey(chacha_key);
m_account.decrypt_keys(chacha_key);
keys_reencryptor = epee::misc_utils::create_scope_leave_handler([&, this, chacha_key]() { m_account.encrypt_keys(chacha_key); m_account.decrypt_viewkey(chacha_key); });
}
if (m_multisig_rounds_passed == multisig_rounds_required(m_multisig_signers.size(), m_multisig_threshold) - 1)
{
// the last round is passed and we have to calculate spend public key
// add ours if not included
crypto::public_key local_signer = get_multisig_signer_public_key();
if (std::find(signers.begin(), signers.end(), local_signer) == signers.end())
{
signers.push_back(local_signer);
for (const auto &msk: get_account().get_multisig_keys())
{
derivations.insert(rct::rct2pk(rct::scalarmultBase(rct::sk2rct(msk))));
}
}
CHECK_AND_ASSERT_THROW_MES(signers.size() == m_multisig_signers.size(), "Bad signers size");
// Summing all of unique public multisig keys to calculate common public spend key
crypto::public_key spend_public_key = cryptonote::generate_multisig_M_N_spend_public_key(std::vector<crypto::public_key>(derivations.begin(), derivations.end()));
m_account_public_address.m_spend_public_key = spend_public_key;
m_account.finalize_multisig(spend_public_key);
m_multisig_signers = signers;
std::sort(m_multisig_signers.begin(), m_multisig_signers.end(), [](const crypto::public_key &e0, const crypto::public_key &e1){ return memcmp(&e0, &e1, sizeof(e0)); });
++m_multisig_rounds_passed;
m_multisig_derivations.clear();
// keys are encrypted again
keys_reencryptor = epee::misc_utils::auto_scope_leave_caller();
if (!m_wallet_file.empty())
{
bool r = store_keys(m_keys_file, password, false);
THROW_WALLET_EXCEPTION_IF(!r, error::file_save_error, m_keys_file);
if (boost::filesystem::exists(m_wallet_file + ".address.txt"))
{
r = file_io_utils::save_string_to_file(m_wallet_file + ".address.txt", m_account.get_public_address_str(m_nettype));
if(!r) MERROR("String with address text not saved");
}
}
m_subaddresses.clear();
m_subaddress_labels.clear();
add_subaddress_account(tr("Primary account"));
if (!m_wallet_file.empty())
store();
return {};
}
// Below are either middle or secret spend key establishment rounds
for (const auto& key: m_multisig_derivations)
derivations.erase(key);
// Deriving multisig keys (set of Mi = b * Bi) according to DH from other participants' multisig keys.
auto new_derivations = cryptonote::generate_multisig_derivations(get_account().get_keys(), std::vector<crypto::public_key>(derivations.begin(), derivations.end()));
std::string extra_multisig_info;
if (m_multisig_rounds_passed == multisig_rounds_required(m_multisig_signers.size(), m_multisig_threshold) - 2) // next round is last
{
// Next round is last therefore we are performing secret spend establishment round as described above.
MINFO("Creating spend key...");
// Calculating our secret multisig keys by hashing our public multisig keys.
auto multisig_keys = cryptonote::calculate_multisig_keys(std::vector<crypto::public_key>(new_derivations.begin(), new_derivations.end()));
// And summing it to get personal secret spend key
crypto::secret_key spend_skey = cryptonote::calculate_multisig_signer_key(multisig_keys);
m_account.make_multisig(m_account.get_keys().m_view_secret_key, spend_skey, rct::rct2pk(rct::identity()), multisig_keys);
// Packing public multisig keys to exchange with others and calculate common public spend key in the last round
extra_multisig_info = pack_multisignature_keys(MULTISIG_EXTRA_INFO_MAGIC, secret_keys_to_public_keys(multisig_keys), spend_skey);
}
else
{
// This is just middle round
MINFO("Preparing keys for next exchange round...");
extra_multisig_info = pack_multisignature_keys(MULTISIG_EXTRA_INFO_MAGIC, new_derivations, m_account.get_keys().m_spend_secret_key);
m_multisig_derivations = new_derivations;
}
++m_multisig_rounds_passed;
create_keys_file(m_wallet_file, false, password, boost::filesystem::exists(m_wallet_file + ".address.txt"));
return extra_multisig_info;
}
void wallet2::unpack_multisig_info(const std::vector<std::string>& info,
std::vector<crypto::public_key> &public_keys,
std::vector<crypto::secret_key> &secret_keys) const
{
// parse all multisig info
std::vector<crypto::secret_key> secret_keys(info.size());
std::vector<crypto::public_key> public_keys(info.size());
public_keys.resize(info.size());
secret_keys.resize(info.size());
for (size_t i = 0; i < info.size(); ++i)
{
THROW_WALLET_EXCEPTION_IF(!verify_multisig_info(info[i], secret_keys[i], public_keys[i]),
@ -3971,75 +4202,51 @@ std::string wallet2::make_multisig(const epee::wipeable_string &password,
"Found local spend public key, but not local view secret key - something very weird");
}
}
}
std::string wallet2::make_multisig(const epee::wipeable_string &password,
const std::vector<std::string> &info,
uint32_t threshold)
{
std::vector<crypto::secret_key> secret_keys(info.size());
std::vector<crypto::public_key> public_keys(info.size());
unpack_multisig_info(info, public_keys, secret_keys);
return make_multisig(password, secret_keys, public_keys, threshold);
}
bool wallet2::finalize_multisig(const epee::wipeable_string &password, std::unordered_set<crypto::public_key> pkeys, std::vector<crypto::public_key> signers)
{
CHECK_AND_ASSERT_THROW_MES(!pkeys.empty(), "empty pkeys");
// keys are decrypted
epee::misc_utils::auto_scope_leave_caller keys_reencryptor;
if (m_ask_password == AskPasswordToDecrypt && !m_unattended && !m_watch_only)
{
crypto::chacha_key chacha_key;
crypto::generate_chacha_key(password.data(), password.size(), chacha_key, m_kdf_rounds);
m_account.encrypt_viewkey(chacha_key);
m_account.decrypt_keys(chacha_key);
keys_reencryptor = epee::misc_utils::create_scope_leave_handler([&, this, chacha_key]() { m_account.encrypt_keys(chacha_key); m_account.decrypt_viewkey(chacha_key); });
}
exchange_multisig_keys(password, pkeys, signers);
return true;
}
// add ours if not included
crypto::public_key local_signer;
CHECK_AND_ASSERT_THROW_MES(crypto::secret_key_to_public_key(get_account().get_keys().m_spend_secret_key, local_signer),
"Failed to derive public spend key");
if (std::find(signers.begin(), signers.end(), local_signer) == signers.end())
bool wallet2::unpack_extra_multisig_info(const std::vector<std::string>& info,
std::vector<crypto::public_key> &signers,
std::unordered_set<crypto::public_key> &pkeys) const
{
// parse all multisig info
signers.resize(info.size(), crypto::null_pkey);
for (size_t i = 0; i < info.size(); ++i)
{
signers.push_back(local_signer);
for (const auto &msk: get_account().get_multisig_keys())
{
pkeys.insert(rct::rct2pk(rct::scalarmultBase(rct::sk2rct(msk))));
}
if (!verify_extra_multisig_info(info[i], pkeys, signers[i]))
{
return false;
}
}
CHECK_AND_ASSERT_THROW_MES(signers.size() == m_multisig_signers.size(), "Bad signers size");
crypto::public_key spend_public_key = cryptonote::generate_multisig_N1_N_spend_public_key(std::vector<crypto::public_key>(pkeys.begin(), pkeys.end()));
m_account_public_address.m_spend_public_key = spend_public_key;
m_account.finalize_multisig(spend_public_key);
m_multisig_signers = signers;
std::sort(m_multisig_signers.begin(), m_multisig_signers.end(), [](const crypto::public_key &e0, const crypto::public_key &e1){ return memcmp(&e0, &e1, sizeof(e0)); });
// keys are encrypted again
keys_reencryptor = epee::misc_utils::auto_scope_leave_caller();
create_keys_file(m_wallet_file, false, password, boost::filesystem::exists(m_wallet_file + ".address.txt"));
m_subaddresses.clear();
m_subaddress_labels.clear();
add_subaddress_account(tr("Primary account"));
if (!m_wallet_file.empty())
store();
return true;
}
bool wallet2::finalize_multisig(const epee::wipeable_string &password, const std::vector<std::string> &info)
{
// parse all multisig info
std::unordered_set<crypto::public_key> public_keys;
std::vector<crypto::public_key> signers(info.size(), crypto::null_pkey);
for (size_t i = 0; i < info.size(); ++i)
std::vector<crypto::public_key> signers;
if (!unpack_extra_multisig_info(info, signers, public_keys))
{
if (!verify_extra_multisig_info(info[i], public_keys, signers[i]))
{
MERROR("Bad multisig info");
return false;
}
MERROR("Bad multisig info");
return false;
}
return finalize_multisig(password, public_keys, signers);
}
@ -4102,14 +4309,13 @@ bool wallet2::verify_multisig_info(const std::string &data, crypto::secret_key &
bool wallet2::verify_extra_multisig_info(const std::string &data, std::unordered_set<crypto::public_key> &pkeys, crypto::public_key &signer)
{
const size_t header_len = strlen("MultisigxV1");
if (data.size() < header_len || data.substr(0, header_len) != "MultisigxV1")
if (data.size() < MULTISIG_EXTRA_INFO_MAGIC.size() || data.substr(0, MULTISIG_EXTRA_INFO_MAGIC.size()) != MULTISIG_EXTRA_INFO_MAGIC)
{
MERROR("Multisig info header check error");
return false;
}
std::string decoded;
if (!tools::base58::decode(data.substr(header_len), decoded))
if (!tools::base58::decode(data.substr(MULTISIG_EXTRA_INFO_MAGIC.size()), decoded))
{
MERROR("Multisig info decoding error");
return false;

@ -573,6 +573,14 @@ namespace tools
const std::vector<crypto::secret_key> &view_keys,
const std::vector<crypto::public_key> &spend_keys,
uint32_t threshold);
std::string exchange_multisig_keys(const epee::wipeable_string &password,
const std::vector<std::string> &info);
/*!
* \brief Any but first round of keys exchange
*/
std::string exchange_multisig_keys(const epee::wipeable_string &password,
std::unordered_set<crypto::public_key> pkeys,
std::vector<crypto::public_key> signers);
/*!
* \brief Finalizes creation of a multisig wallet
*/
@ -1245,6 +1253,12 @@ namespace tools
bool get_rct_distribution(uint64_t &start_height, std::vector<uint64_t> &distribution);
uint64_t get_segregation_fork_height() const;
void unpack_multisig_info(const std::vector<std::string>& info,
std::vector<crypto::public_key> &public_keys,
std::vector<crypto::secret_key> &secret_keys) const;
bool unpack_extra_multisig_info(const std::vector<std::string>& info,
std::vector<crypto::public_key> &signers,
std::unordered_set<crypto::public_key> &pkeys) const;
void cache_tx_data(const cryptonote::transaction& tx, const crypto::hash &txid, tx_cache_data &tx_cache_data) const;
@ -1295,6 +1309,9 @@ namespace tools
bool m_multisig; /*!< if > 1 spend secret key will not match spend public key */
uint32_t m_multisig_threshold;
std::vector<crypto::public_key> m_multisig_signers;
//in case of general M/N multisig wallet we should perform N - M + 1 key exchange rounds and remember how many rounds are passed.
uint32_t m_multisig_rounds_passed;
std::vector<crypto::public_key> m_multisig_derivations;
bool m_always_confirm_transfers;
bool m_print_ring_members;
bool m_store_tx_info; /*!< request txkey to be returned in RPC, and store in the wallet cache file */

@ -3119,7 +3119,7 @@ namespace tools
return false;
}
if (req.multisig_info.size() < threshold - 1)
if (req.multisig_info.size() < 1 || req.multisig_info.size() > total)
{
er.code = WALLET_RPC_ERROR_CODE_THRESHOLD_NOT_REACHED;
er.message = "Needs multisig info from more participants";
@ -3146,6 +3146,55 @@ namespace tools
return true;
}
//------------------------------------------------------------------------------------------------------------------------------
bool wallet_rpc_server::on_exchange_multisig_keys(const wallet_rpc::COMMAND_RPC_EXCHANGE_MULTISIG_KEYS::request& req, wallet_rpc::COMMAND_RPC_EXCHANGE_MULTISIG_KEYS::response& res, epee::json_rpc::error& er)
{
if (!m_wallet) return not_open(er);
if (m_restricted)
{
er.code = WALLET_RPC_ERROR_CODE_DENIED;
er.message = "Command unavailable in restricted mode.";
return false;
}
bool ready;
uint32_t threshold, total;
if (!m_wallet->multisig(&ready, &threshold, &total))
{
er.code = WALLET_RPC_ERROR_CODE_NOT_MULTISIG;
er.message = "This wallet is not multisig";
return false;
}
if (ready)
{
er.code = WALLET_RPC_ERROR_CODE_ALREADY_MULTISIG;
er.message = "This wallet is multisig, and already finalized";
return false;
}
if (req.multisig_info.size() < 1 || req.multisig_info.size() > total)
{
er.code = WALLET_RPC_ERROR_CODE_THRESHOLD_NOT_REACHED;
er.message = "Needs multisig info from more participants";
return false;
}
try
{
res.multisig_info = m_wallet->exchange_multisig_keys(req.password, req.multisig_info);
if (res.multisig_info.empty())
{
res.address = m_wallet->get_account().get_public_address_str(m_wallet->nettype());
}
}
catch (const std::exception &e)
{
er.code = WALLET_RPC_ERROR_CODE_UNKNOWN_ERROR;
er.message = std::string("Error calling exchange_multisig_info: ") + e.what();
return false;
}
return true;
}
//------------------------------------------------------------------------------------------------------------------------------
bool wallet_rpc_server::on_sign_multisig(const wallet_rpc::COMMAND_RPC_SIGN_MULTISIG::request& req, wallet_rpc::COMMAND_RPC_SIGN_MULTISIG::response& res, epee::json_rpc::error& er)
{
if (!m_wallet) return not_open(er);

@ -141,6 +141,7 @@ namespace tools
MAP_JON_RPC_WE("export_multisig_info", on_export_multisig, wallet_rpc::COMMAND_RPC_EXPORT_MULTISIG)
MAP_JON_RPC_WE("import_multisig_info", on_import_multisig, wallet_rpc::COMMAND_RPC_IMPORT_MULTISIG)
MAP_JON_RPC_WE("finalize_multisig", on_finalize_multisig, wallet_rpc::COMMAND_RPC_FINALIZE_MULTISIG)
MAP_JON_RPC_WE("exchange_multisig_keys", on_exchange_multisig_keys, wallet_rpc::COMMAND_RPC_EXCHANGE_MULTISIG_KEYS)
MAP_JON_RPC_WE("sign_multisig", on_sign_multisig, wallet_rpc::COMMAND_RPC_SIGN_MULTISIG)
MAP_JON_RPC_WE("submit_multisig", on_submit_multisig, wallet_rpc::COMMAND_RPC_SUBMIT_MULTISIG)
MAP_JON_RPC_WE("get_version", on_get_version, wallet_rpc::COMMAND_RPC_GET_VERSION)
@ -218,6 +219,7 @@ namespace tools
bool on_export_multisig(const wallet_rpc::COMMAND_RPC_EXPORT_MULTISIG::request& req, wallet_rpc::COMMAND_RPC_EXPORT_MULTISIG::response& res, epee::json_rpc::error& er);
bool on_import_multisig(const wallet_rpc::COMMAND_RPC_IMPORT_MULTISIG::request& req, wallet_rpc::COMMAND_RPC_IMPORT_MULTISIG::response& res, epee::json_rpc::error& er);
bool on_finalize_multisig(const wallet_rpc::COMMAND_RPC_FINALIZE_MULTISIG::request& req, wallet_rpc::COMMAND_RPC_FINALIZE_MULTISIG::response& res, epee::json_rpc::error& er);
bool on_exchange_multisig_keys(const wallet_rpc::COMMAND_RPC_EXCHANGE_MULTISIG_KEYS::request& req, wallet_rpc::COMMAND_RPC_EXCHANGE_MULTISIG_KEYS::response& res, epee::json_rpc::error& er);
bool on_sign_multisig(const wallet_rpc::COMMAND_RPC_SIGN_MULTISIG::request& req, wallet_rpc::COMMAND_RPC_SIGN_MULTISIG::response& res, epee::json_rpc::error& er);
bool on_submit_multisig(const wallet_rpc::COMMAND_RPC_SUBMIT_MULTISIG::request& req, wallet_rpc::COMMAND_RPC_SUBMIT_MULTISIG::response& res, epee::json_rpc::error& er);
bool on_get_version(const wallet_rpc::COMMAND_RPC_GET_VERSION::request& req, wallet_rpc::COMMAND_RPC_GET_VERSION::response& res, epee::json_rpc::error& er);

@ -1990,6 +1990,31 @@ namespace wallet_rpc
};
};
struct COMMAND_RPC_EXCHANGE_MULTISIG_KEYS
{
struct request
{
std::string password;
std::vector<std::string> multisig_info;
BEGIN_KV_SERIALIZE_MAP()
KV_SERIALIZE(password)
KV_SERIALIZE(multisig_info)
END_KV_SERIALIZE_MAP()
};
struct response
{
std::string address;
std::string multisig_info;
BEGIN_KV_SERIALIZE_MAP()
KV_SERIALIZE(address)
KV_SERIALIZE(multisig_info)
END_KV_SERIALIZE_MAP()
};
};
struct COMMAND_RPC_SIGN_MULTISIG
{
struct request

@ -593,7 +593,7 @@ inline bool do_replay_file(const std::string& filename)
std::vector<crypto::public_key> spend_public_keys; \
for (const auto &k: all_multisig_keys) \
spend_public_keys.push_back(k); \
crypto::public_key spend_pkey = cryptonote::generate_multisig_N1_N_spend_public_key(spend_public_keys); \
crypto::public_key spend_pkey = cryptonote::generate_multisig_M_N_spend_public_key(spend_public_keys); \
for (size_t msidx = 0; msidx < total; ++msidx) \
account[msidx].finalize_multisig(spend_pkey); \
} \

@ -49,9 +49,19 @@ static const struct
{
"9t6Hn946u3eah5cuncH1hB5hGzsTUoevtf4SY7MHN5NgJZh2SFWsyVt3vUhuHyRKyrCQvr71Lfc1AevG3BXE11PQFoXDtD8",
"bbd3175ef9fd9f5eefdc43035f882f74ad14c4cf1799d8b6f9001bc197175d02"
},
{
"9zmAWoNyNPbgnYSm3nJNpAKHm6fCcs3MR94gBWxp9MCDUiMUhyYFfyQETUDLPF7DP6ZsmNo6LRxwPP9VmhHNxKrER9oGigT",
"f2efae45bef1917a7430cda8fcffc4ee010e3178761aa41d4628e23b1fe2d501"
},
{
"9ue8NJMg3WzKxTtmjeXzWYF5KmU6dC7LHEt9wvYdPn2qMmoFUa8hJJHhSHvJ46UEwpDyy5jSboNMRaDBKwU54NT42YcNUp5",
"a4cef54ed3fd61cd78a2ceb82ecf85a903ad2db9a86fb77ff56c35c56016280a"
}
};
static const size_t KEYS_COUNT = 5;
static void make_wallet(unsigned int idx, tools::wallet2 &wallet)
{
ASSERT_TRUE(idx < sizeof(test_addresses) / sizeof(test_addresses[0]));
@ -76,126 +86,87 @@ static void make_wallet(unsigned int idx, tools::wallet2 &wallet)
}
}
static void make_M_2_wallet(tools::wallet2 &wallet0, tools::wallet2 &wallet1, unsigned int M)
static std::vector<std::string> exchange_round(std::vector<tools::wallet2>& wallets, const std::vector<std::string>& mis)
{
ASSERT_TRUE(M <= 2);
make_wallet(0, wallet0);
make_wallet(1, wallet1);
std::vector<crypto::secret_key> sk0(1), sk1(1);
std::vector<crypto::public_key> pk0(1), pk1(1);
wallet0.decrypt_keys("");
std::string mi0 = wallet0.get_multisig_info();
wallet0.encrypt_keys("");
wallet1.decrypt_keys("");
std::string mi1 = wallet1.get_multisig_info();
wallet1.encrypt_keys("");
ASSERT_TRUE(tools::wallet2::verify_multisig_info(mi1, sk0[0], pk0[0]));
ASSERT_TRUE(tools::wallet2::verify_multisig_info(mi0, sk1[0], pk1[0]));
ASSERT_FALSE(wallet0.multisig() || wallet1.multisig());
wallet0.make_multisig("", sk0, pk0, M);
wallet1.make_multisig("", sk1, pk1, M);
ASSERT_TRUE(wallet0.get_account().get_public_address_str(cryptonote::TESTNET) == wallet1.get_account().get_public_address_str(cryptonote::TESTNET));
bool ready;
uint32_t threshold, total;
ASSERT_TRUE(wallet0.multisig(&ready, &threshold, &total));
ASSERT_TRUE(ready);
ASSERT_TRUE(threshold == M);
ASSERT_TRUE(total == 2);
ASSERT_TRUE(wallet1.multisig(&ready, &threshold, &total));
ASSERT_TRUE(ready);
ASSERT_TRUE(threshold == M);
ASSERT_TRUE(total == 2);
std::vector<std::string> new_infos;
for (size_t i = 0; i < wallets.size(); ++i) {
new_infos.push_back(wallets[i].exchange_multisig_keys("", mis));
}
return new_infos;
}
static void make_M_3_wallet(tools::wallet2 &wallet0, tools::wallet2 &wallet1, tools::wallet2 &wallet2, unsigned int M)
static void make_wallets(std::vector<tools::wallet2>& wallets, unsigned int M)
{
ASSERT_TRUE(M <= 3);
make_wallet(0, wallet0);
make_wallet(1, wallet1);
make_wallet(2, wallet2);
std::vector<crypto::secret_key> sk0(2), sk1(2), sk2(2);
std::vector<crypto::public_key> pk0(2), pk1(2), pk2(2);
wallet0.decrypt_keys("");
std::string mi0 = wallet0.get_multisig_info();
wallet0.encrypt_keys("");
wallet1.decrypt_keys("");
std::string mi1 = wallet1.get_multisig_info();
wallet1.encrypt_keys("");
wallet2.decrypt_keys("");
std::string mi2 = wallet2.get_multisig_info();
wallet2.encrypt_keys("");
ASSERT_TRUE(tools::wallet2::verify_multisig_info(mi1, sk0[0], pk0[0]));
ASSERT_TRUE(tools::wallet2::verify_multisig_info(mi2, sk0[1], pk0[1]));
ASSERT_TRUE(tools::wallet2::verify_multisig_info(mi0, sk1[0], pk1[0]));
ASSERT_TRUE(tools::wallet2::verify_multisig_info(mi2, sk1[1], pk1[1]));
ASSERT_TRUE(tools::wallet2::verify_multisig_info(mi0, sk2[0], pk2[0]));
ASSERT_TRUE(tools::wallet2::verify_multisig_info(mi1, sk2[1], pk2[1]));
ASSERT_FALSE(wallet0.multisig() || wallet1.multisig() || wallet2.multisig());
std::string mxi0 = wallet0.make_multisig("", sk0, pk0, M);
std::string mxi1 = wallet1.make_multisig("", sk1, pk1, M);
std::string mxi2 = wallet2.make_multisig("", sk2, pk2, M);
const size_t nset = !mxi0.empty() + !mxi1.empty() + !mxi2.empty();
ASSERT_TRUE((M < 3 && nset == 3) || (M == 3 && nset == 0));
if (nset > 0)
{
std::unordered_set<crypto::public_key> pkeys;
std::vector<crypto::public_key> signers(3, crypto::null_pkey);
ASSERT_TRUE(tools::wallet2::verify_extra_multisig_info(mxi0, pkeys, signers[0]));
ASSERT_TRUE(tools::wallet2::verify_extra_multisig_info(mxi1, pkeys, signers[1]));
ASSERT_TRUE(tools::wallet2::verify_extra_multisig_info(mxi2, pkeys, signers[2]));
ASSERT_TRUE(pkeys.size() == 3);
ASSERT_TRUE(wallet0.finalize_multisig("", pkeys, signers));
ASSERT_TRUE(wallet1.finalize_multisig("", pkeys, signers));
ASSERT_TRUE(wallet2.finalize_multisig("", pkeys, signers));
ASSERT_TRUE(wallets.size() > 1 && wallets.size() <= KEYS_COUNT);
ASSERT_TRUE(M <= wallets.size());
std::vector<std::string> mis(wallets.size());
for (size_t i = 0; i < wallets.size(); ++i) {
make_wallet(i, wallets[i]);
wallets[i].decrypt_keys("");
mis[i] = wallets[i].get_multisig_info();
wallets[i].encrypt_keys("");
}
for (auto& wallet: wallets) {
ASSERT_FALSE(wallet.multisig() || wallet.multisig() || wallet.multisig());
}
std::vector<std::string> mxis;
for (size_t i = 0; i < wallets.size(); ++i) {
// it's ok to put all of multisig keys in this function. it throws in case of error
mxis.push_back(wallets[i].make_multisig("", mis, M));
}
ASSERT_TRUE(wallet0.get_account().get_public_address_str(cryptonote::TESTNET) == wallet1.get_account().get_public_address_str(cryptonote::TESTNET));
ASSERT_TRUE(wallet0.get_account().get_public_address_str(cryptonote::TESTNET) == wallet2.get_account().get_public_address_str(cryptonote::TESTNET));
bool ready;
uint32_t threshold, total;
ASSERT_TRUE(wallet0.multisig(&ready, &threshold, &total));
ASSERT_TRUE(ready);
ASSERT_TRUE(threshold == M);
ASSERT_TRUE(total == 3);
ASSERT_TRUE(wallet1.multisig(&ready, &threshold, &total));
ASSERT_TRUE(ready);
ASSERT_TRUE(threshold == M);
ASSERT_TRUE(total == 3);
ASSERT_TRUE(wallet2.multisig(&ready, &threshold, &total));
ASSERT_TRUE(ready);
ASSERT_TRUE(threshold == M);
ASSERT_TRUE(total == 3);
while (!mxis[0].empty()) {
mxis = exchange_round(wallets, mxis);
}
for (size_t i = 0; i < wallets.size(); ++i) {
ASSERT_TRUE(mxis[i].empty());
bool ready;
uint32_t threshold, total;
ASSERT_TRUE(wallets[i].multisig(&ready, &threshold, &total));
ASSERT_TRUE(ready);
ASSERT_TRUE(threshold == M);
ASSERT_TRUE(total == wallets.size());
if (i != 0) {
// "equals" is transitive relation so we need only to compare first wallet's address to each others' addresses. no need to compare 0's address with itself.
ASSERT_TRUE(wallets[0].get_account().get_public_address_str(cryptonote::TESTNET) == wallets[i].get_account().get_public_address_str(cryptonote::TESTNET));
}
}
}
TEST(multisig, make_2_2)
{
tools::wallet2 wallet0, wallet1;
make_M_2_wallet(wallet0, wallet1, 2);
std::vector<tools::wallet2> wallets(2);
make_wallets(wallets, 2);
}
TEST(multisig, make_3_3)
{
tools::wallet2 wallet0, wallet1, wallet2;
make_M_3_wallet(wallet0, wallet1, wallet2, 3);
std::vector<tools::wallet2> wallets(3);
make_wallets(wallets, 3);
}
TEST(multisig, make_2_3)
{
tools::wallet2 wallet0, wallet1, wallet2;
make_M_3_wallet(wallet0, wallet1, wallet2, 2);
std::vector<tools::wallet2> wallets(3);
make_wallets(wallets, 2);
}
TEST(multisig, make_2_4)
{
std::vector<tools::wallet2> wallets(4);
make_wallets(wallets, 2);
}
TEST(multisig, make_2_5)
{
std::vector<tools::wallet2> wallets(5);
make_wallets(wallets, 2);
}

Loading…
Cancel
Save