Use a different set of round keys for AesGenerator4R

Redefined all AES constants using simpler rules
aes-4r
tevador 5 years ago
parent 8a69efeeae
commit d40d1c149a

@ -120,17 +120,14 @@ AesGenerator1R produces a sequence of pseudo-random bytes.
The internal state of the generator consists of 64 bytes arranged into four columns of 16 bytes each. During each output iteration, every column is decrypted (columns 0, 2) or encrypted (columns 1, 3) with one AES round using the following round keys (one key per column):
```
key0 = 2d ec ee 84 d5 f6 4f 45 32 91 32 ca e3 a2 20 df
key1 = d0 63 7b 01 78 c5 0f f1 7f 38 d0 fe 71 59 eb 1d
key2 = 52 7a 7d 32 a1 70 2c 2f b4 ce 17 a5 b3 26 c9 df
key3 = d3 77 8d 5c 5e da 17 3d a9 e0 ec a0 1c f3 1c 34
key0 = 53 a5 ac 6d 09 66 71 62 2b 55 b5 db 17 49 f4 b4
key1 = 07 af 7c 6d 0d 71 6a 84 78 d3 25 17 4e dc a1 0d
key2 = f1 62 12 3f c6 7e 94 9f 4f 79 c0 f4 45 e3 20 3e
key3 = 35 81 ef 6a 7c 31 ba b1 88 4c 31 16 54 91 16 49
```
These keys were generated by calculating Blake2b hash with 256-bit output of these ASCII strings (first 128 bits of the hash are used):
These keys were generated as:
```
"RandomX Generator key0"
"RandomX Generator key1"
"RandomX Generator key2"
"RandomX Generator key3"
key0, key1, key2, key3 = Hash512("RandomX AesGenerator1R keys")
```
@ -171,7 +168,18 @@ state0 (16 B) state1 (16 B) state2 (16 B) state3 (16 B)
state0' state1' state2' state3'
```
Round keys `key0`, `key1`, `key2` and `key3` are the same as the ones used by AesGenerator1R.
AesGenerator4R uses the following 4 round keys:
```
key0 = 5d 46 90 f8 a6 e4 fb 7f b7 82 1f 14 95 9e 35 cf
key1 = 50 c4 55 6a 8a 27 e8 fe c3 5a 5c bd dc ff 41 67
key2 = a4 47 4c 11 e4 fd 24 d5 d2 9a 27 a7 ac 4a 32 3d
key3 = 2a 3a 0c 81 ff ae a9 99 d9 db d3 42 08 db f6 76
```
These keys were generated as:
```
key0, key1, key2, key3 = Hash512("RandomX AesGenerator4R keys")
```
### 3.4 AesHash1R
@ -180,18 +188,15 @@ AesHash1R calculates a 512-bit fingerprint of its input.
AesHash1R has a 64-byte internal state, which is arranged into four columns of 16 bytes each. The initial state is:
```
state0 = 00 8e 77 c4 ab f5 7a 88 67 d1 46 11 fd 26 31 8d
state1 = 4b ef 34 b8 89 af 95 1b 2b 63 da 58 a1 9f fe 19
state2 = 3a dd 42 77 00 3a 28 ab 44 d7 5a c3 74 cd b2 1b
state3 = 9a 44 8b e1 cc 97 5d dc 57 3c 59 49 8a a5 30 bb
state0 = 0d 2c b5 92 de 56 a8 9f 47 db 82 cc ad 3a 98 d7
state1 = 6e 99 8d 33 98 b7 c7 15 5a 12 9e f5 57 80 e7 ac
state2 = 17 00 77 6a d0 c7 62 ae 6b 50 79 50 e4 7c a0 e8
state3 = 0c 24 0a 63 8d 82 ad 07 05 00 a1 79 48 49 99 7e
```
The initial state vectors were generated by calculating Blake2b hash with 256-bit output of these ASCII strings (first 128 bits of the hash are used):
The initial state vectors were generated as:
```
"RandomX Finalizer state0"
"RandomX Finalizer state1"
"RandomX Finalizer state2"
"RandomX Finalizer state3"
state0, state1, state2, state3 = Hash512("RandomX AesHash1R state")
```
The input is processed in 64-byte blocks. Each input block is considered to be a set of four AES round keys `key0`, `key1`, `key2`, `key3`. Each state column is encrypted (columns 0, 2) or decrypted (columns 1, 3) with one AES round using the corresponding round key:
@ -209,14 +214,13 @@ state0 (16 B) state1 (16 B) state2 (16 B) state3 (16 B)
When all input bytes have been processed, the state is processed with two additional AES rounds with the following extra keys (one key per round, same pair of keys for all columns):
```
xkey0 = 47 f2 cb 11 9c 92 5a 2a 3d 59 c5 e4 83 12 95 83
xkey1 = 95 6c 81 ce 0b ef 7b 47 23 25 bc ab b2 5b 21 ff
xkey0 = 89 83 fa f6 9f 94 24 8b bf 56 dc 90 01 02 89 06
xkey1 = d1 63 b2 61 3c e0 f4 51 c6 43 10 ee 9b f9 18 ed
```
The extra keys were generated by calculating Blake2b hash with 256-bit output of these ASCII strings (first 128 bits of the hash are used):
The extra keys were generated as:
```
"RandomX Finalizer xkey0"
"RandomX Finalizer xkey1"
xkey0, xkey1 = Hash256("RandomX AesHash1R xkeys")
```
```

@ -28,6 +28,14 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "soft_aes.h"
#define AES_HASH_1R_STATE0 0xd7983aad, 0xcc82db47, 0x9fa856de, 0x92b52c0d
#define AES_HASH_1R_STATE1 0xace78057, 0xf59e125a, 0x15c7b798, 0x338d996e
#define AES_HASH_1R_STATE2 0xe8a07ce4, 0x5079506b, 0xae62c7d0, 0x6a770017
#define AES_HASH_1R_STATE3 0x7e994948, 0x79a10005, 0x07ad828d, 0x630a240c
#define AES_HASH_1R_XKEY0 0x06890201, 0x90dc56bf, 0x8b24949f, 0xf6fa8389
#define AES_HASH_1R_XKEY1 0xed18f99b, 0xee1043c6, 0x51f4e03c, 0x61b263d1
/*
Calculate a 512-bit hash of 'input' using 4 lanes of AES.
The input is treated as a set of round keys for the encryption
@ -49,10 +57,10 @@ void hashAes1Rx4(const void *input, size_t inputSize, void *hash) {
rx_vec_i128 in0, in1, in2, in3;
//intial state
state0 = rx_set_int_vec_i128(0x8d3126fd, 0x1146d167, 0x887af5ab, 0xc4778e00);
state1 = rx_set_int_vec_i128(0x19fe9fa1, 0x58da632b, 0x1b95af89, 0xb834ef4b);
state2 = rx_set_int_vec_i128(0x1bb2cd74, 0xc35ad744, 0xab283a00, 0x7742dd3a);
state3 = rx_set_int_vec_i128(0xbb30a58a, 0x49593c57, 0xdc5d97cc, 0xe18b449a);
state0 = rx_set_int_vec_i128(AES_HASH_1R_STATE0);
state1 = rx_set_int_vec_i128(AES_HASH_1R_STATE1);
state2 = rx_set_int_vec_i128(AES_HASH_1R_STATE2);
state3 = rx_set_int_vec_i128(AES_HASH_1R_STATE3);
//process 64 bytes at a time in 4 lanes
while (inptr < inputEnd) {
@ -70,8 +78,8 @@ void hashAes1Rx4(const void *input, size_t inputSize, void *hash) {
}
//two extra rounds to achieve full diffusion
rx_vec_i128 xkey0 = rx_set_int_vec_i128(0x83951283, 0xe4c5593d, 0x2a5a929c, 0x11cbf247);
rx_vec_i128 xkey1 = rx_set_int_vec_i128(0xff215bb2, 0xabbc2523, 0x477bef0b, 0xce816c95);
rx_vec_i128 xkey0 = rx_set_int_vec_i128(AES_HASH_1R_XKEY0);
rx_vec_i128 xkey1 = rx_set_int_vec_i128(AES_HASH_1R_XKEY1);
state0 = aesenc<softAes>(state0, xkey0);
state1 = aesdec<softAes>(state1, xkey0);
@ -93,10 +101,10 @@ void hashAes1Rx4(const void *input, size_t inputSize, void *hash) {
template void hashAes1Rx4<false>(const void *input, size_t inputSize, void *hash);
template void hashAes1Rx4<true>(const void *input, size_t inputSize, void *hash);
#define AES_FILL_KEY0 0xdf20a2e3, 0xca329132, 0x454ff6d5, 0x84eeec2d
#define AES_FILL_KEY1 0x1deb5971, 0xfed0387f, 0xf10fc578, 0x017b63d0
#define AES_FILL_KEY2 0xdfc926b3, 0xa517ceb4, 0x2f2c70a1, 0x327d7a52
#define AES_FILL_KEY3 0x341cf31c, 0xa0ece0a9, 0x3d17da5e, 0x5c8d77d3
#define AES_GEN_1R_KEY0 0xb4f44917, 0xdbb5552b, 0x62716609, 0x6daca553
#define AES_GEN_1R_KEY1 0x0da1dc4e, 0x1725d378, 0x846a710d, 0x6d7caf07
#define AES_GEN_1R_KEY2 0x3e20e345, 0xf4c0794f, 0x9f947ec6, 0x3f1262f1
#define AES_GEN_1R_KEY3 0x49169154, 0x16314c88, 0xb1ba317c, 0x6aef8135
/*
Fill 'buffer' with pseudorandom data based on 512-bit 'state'.
@ -116,10 +124,10 @@ void fillAes1Rx4(void *state, size_t outputSize, void *buffer) {
rx_vec_i128 state0, state1, state2, state3;
rx_vec_i128 key0, key1, key2, key3;
key0 = rx_set_int_vec_i128(AES_FILL_KEY0);
key1 = rx_set_int_vec_i128(AES_FILL_KEY1);
key2 = rx_set_int_vec_i128(AES_FILL_KEY2);
key3 = rx_set_int_vec_i128(AES_FILL_KEY3);
key0 = rx_set_int_vec_i128(AES_GEN_1R_KEY0);
key1 = rx_set_int_vec_i128(AES_GEN_1R_KEY1);
key2 = rx_set_int_vec_i128(AES_GEN_1R_KEY2);
key3 = rx_set_int_vec_i128(AES_GEN_1R_KEY3);
state0 = rx_load_vec_i128((rx_vec_i128*)state + 0);
state1 = rx_load_vec_i128((rx_vec_i128*)state + 1);
@ -149,6 +157,11 @@ void fillAes1Rx4(void *state, size_t outputSize, void *buffer) {
template void fillAes1Rx4<true>(void *state, size_t outputSize, void *buffer);
template void fillAes1Rx4<false>(void *state, size_t outputSize, void *buffer);
#define AES_GEN_4R_KEY0 0xcf359e95, 0x141f82b7, 0x7ffbe4a6, 0xf890465d
#define AES_GEN_4R_KEY1 0x6741ffdc, 0xbd5c5ac3, 0xfee8278a, 0x6a55c450
#define AES_GEN_4R_KEY2 0x3d324aac, 0xa7279ad2, 0xd524fde4, 0x114c47a4
#define AES_GEN_4R_KEY3 0x76f6db08, 0x42d3dbd9, 0x99a9aeff, 0x810c3a2a
template<bool softAes>
void fillAes4Rx4(void *state, size_t outputSize, void *buffer) {
const uint8_t* outptr = (uint8_t*)buffer;
@ -157,10 +170,10 @@ void fillAes4Rx4(void *state, size_t outputSize, void *buffer) {
rx_vec_i128 state0, state1, state2, state3;
rx_vec_i128 key0, key1, key2, key3;
key0 = rx_set_int_vec_i128(AES_FILL_KEY0);
key1 = rx_set_int_vec_i128(AES_FILL_KEY1);
key2 = rx_set_int_vec_i128(AES_FILL_KEY2);
key3 = rx_set_int_vec_i128(AES_FILL_KEY3);
key0 = rx_set_int_vec_i128(AES_GEN_4R_KEY0);
key1 = rx_set_int_vec_i128(AES_GEN_4R_KEY1);
key2 = rx_set_int_vec_i128(AES_GEN_4R_KEY2);
key3 = rx_set_int_vec_i128(AES_GEN_4R_KEY3);
state0 = rx_load_vec_i128((rx_vec_i128*)state + 0);
state1 = rx_load_vec_i128((rx_vec_i128*)state + 1);

@ -241,7 +241,7 @@ int main(int argc, char** argv) {
std::cout << "Calculated result: ";
result.print(std::cout);
if (noncesCount == 1000 && seedValue == 0)
std::cout << "Reference result: 2599bd6d913b0eadef37857c498d44a24fa6bdd02c20deff8c837f9e5bb25e56" << std::endl;
std::cout << "Reference result: 669ae4f2e5e2c0d9cc232ff2c37d41ae113fa302bbf983d9f3342879831b4edf" << std::endl;
if (!miningMode) {
std::cout << "Performance: " << 1000 * elapsed / noncesCount << " ms per hash" << std::endl;
}

Loading…
Cancel
Save