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2. Executive summary

2.1 Synthesis

Quarkslab has studied the security of the Monero Research Lab’s new Proof-of-Work algorithm
called RandomX. The evaluation was spread over about three weeks for a total of 32 days with
three engineers. It took over from three other security audits, all four made possible thanks to
the Open Source Technology Improvement Fund.
Therefore, to maximize the value of a fourth review, Quarkslab focused part of its efforts on:

• the analysis of a few areas less covered by the previous reports,
• the analysis of the previous reports, the responses of Monero Research Lab, and the

subsequent changes in the code and in the specifications.

Despite a highly complex and radically new subject, the documentation and code of RandomX
were of very high quality. All the attack paths we could think of had already been taken into
account or at least studied in the previous audits. Then we reviewed the previous reports, the
Monero Research Lab replies and their subsequent code changes. We agree with them.
Moreover, we didn’t find any significant optimization of the proof-of-work algorithm, even with
approximations.
We only found minor inconsistencies and formulated a few recommendations. These recommen-
dations are mainly relevant when using alternative configurations but they are not so important
with the current configuration and usage of RandomX.
We chose the terms Medium, Low and None to define their priority in the following table. We
didn’t include some of our recommendations in this table as they had already been mentioned
in the previous reports, still we mention them in this report.
The provided tests could be enhanced by adapting them to work beyond the default RandomX
configuration and strengthening the tests of the more complex components such as the JIT
version of the VM.

Ref.: 19-07-610-REP Quarkslab SAS 2
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2.2 Issues and recommendations summary

ID Issue and recommendation Impact

RNDX-M1
(p 10)

To prevent the use of an abnormally short Argon2d salt, the docu-
mentation of the configuration should clarify the allowed values of
RANDOMX_ARGON_SALT as being in the range going from 8 to
232 −1 (inclusive) and the code should check the Argon2d parameters,
e.g., by using a patched version of rxa2_validate_inputs (skipping the
check on the length of the output as RandomX does not use the out-
put).

Medium

RNDX-M2
(p 20)

The specifications of the datasetOffset computation must be adapted
to reflect the use of the modulus. The risk exists for other currencies
choosing customized RANDOMX_DATASET_EXTRA_SIZE and
implementing alternative clients based on the specifications to end
up with two types of clients giving different PoW hash results.

Medium

RNDX-M3
(p 22)

We recommend checking the size of the RandomX input key although
it may require some extra modification as API functions don’t return
error codes. It can also be explicitly stated in the specifications what
happens when a longer key is used.

Medium

RNDX-L1
(p 10)

Permitted values for RANDOMX_ARGON_LANES should be upper
bounded in the configuration document to 224 − 1 (inclusive) and
RANDOMX_ARGON_ITERATIONS should be upper bounded to
232 − 1 (inclusive).

Low

RNDX-L2
(p 10)

Permitted values for RANDOMX_ARGON_MEMORY should be
lower bounded in the configuration document to 8 (as AR-
GON2_SYNC_POINTS = 4) and not 1.

Low

RNDX-L3
(p 20)

To avoid misunderstandings, we suggest to mention explicitly the 64-
byte alignment of mx in the specifications in 4.6.2.5 (loop). Similarly,
the alignment of ma should be added in 4.5.3 (initialization) or 4.6.2.7
(loop).

Low

RNDX-N1
(p 7)

Provided that they diversify the other existing configuration param-
eters, RandomX alternatives can work with the various seed strings
hardcoded with identical values. Nevertheless, in our opinion, these
protocol personalization strings should become part of the configura-
tion parameters. We recommend to allow the customization of these
strings and then derive the constants and tables dynamically during
the compilation or startup.

None

RNDX-N2
(p 8)

It is also possible to add warnings or disclaimers around some of
the RandomX cryptographic components (AesGenerator1R, AesGen-
erator4R and AesHash1R) in the specifications and design notes to
highlight the dangers of reusing them in other contexts different from
this PoW, because of their lack of general cryptographic properties.

None

Ref.: 19-07-610-REP Quarkslab SAS 3
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3. Context
With the support of the Open Source Technology Improvement Fund, Monero Research Lab
ordered four independent security reviews of its new Proof-of-Work algorithm RandomX. Quark-
slab security review was conducted once the reports of the three previous reviews were available
([ToB], [Kud] and [X41]). To maximize the value of a fourth review, Quarkslab focused part of
its efforts into:

• the analysis of a few areas less covered by previous reports,
• the analysis of the previous reports, the responses of Monero Research Lab, and the

subsequent changes in the code and in the specifications.

3.1 Description of the request

The primary goals of such audit are to verify that:
• the implementation of the protocol is well respected,
• there are no vulnerabilities,
• criterias for a proof of work are met.

Criteria for a proof of work algorithm are :
• Optimization-free: there is no algorithmic speed-up that allows one to calculate the

hash faster than the reference algorithm.
• Progress-free: proof of work calculation does not depend on the history of previous

calculations.
• Approximation-free: it is not possible to achieve speed-up larger than the inverse rate

of invalid hashes

Monero Research Lab expected a full audit (implementation review and vulnerability analysis) of
the basic implementation (hashing function itself which includes VM implementation). For the
components used to speed up things (JIT, large pages, etc.) and for the third-party components
(Blake, AES, Argon), the audit only verifies that they are correctly handled by RandomX. Their
analysis is out of scope. For "optimization free" criteria, the audit verifies that there is no other
way for ASIC but to fully implement this VM and that there are no ways to make it run much
faster on CPU than with current JIT code.

3.2 Methodology

The evaluation that Quarkslab undertook included the four following steps:
• Global understanding of the specifications and RandomX components (5 days).
• Checking that the RandomX specifications are cryptographically secured and do not allow

algorithmic optimizations (10 days).
• Validating that the code matches the specifications + vulnerability analysis (10 days).
• Verifying that implementation is "optimization free" (7 days).

Ref.: 19-07-610-REP Quarkslab SAS 4
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3.3 Chronology

The evaluation was spread over about three weeks for a total of 32 days with three engineers.
• July 4: kick-off meeting with Monero Research Lab.
• July 11, 12, 18: intermediate results published as GitHub issues.
• July 30: final report.
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4. Proof-of-work algorithm specifications
RandomX is a PoW algorithm. To justify their design choices, the authors of this project
provide pieces of documentation, the most relevant ones to describe the algorithm are:

• the specifications1,
• the rational behind the design2 and
• the configuration of the parameters3.

4.1 Audited versions

The reviewed versions of the specifications were:
• the tagged version 1.0.4 of RandomX4 and
• all the subsequent commits until commit 5d815c57c0860f395.

4.2 Algorithm

The algorithm is described in Section 2 of the specifications6. The algorithm takes as inputs:
• a string K and
• a string H.

The algorithm outputs a 256-bit result R. In order to highlight the loop, we rewrite the algorithm
as follows.

1. The Dataset is initialized using the key value K.
2. 64-byte seed S is calculated as S = Hash512(H).
3. Let gen1 = AesGenerator1R(S).
4. The Scratchpad is filled with RANDOMX_SCRATCHPAD_L3 random bytes using

generator gen1.
5. Let gen4 = AesGenerator4R(gen1.state) (use the final state of gen1).
6. The value of the VM register fprc is set to 0.

// 11. Steps 7-10 are performed a total of RANDOMX_PROGRAM_COUNT times. The
// last iteration skips steps 9 and 10.
Repeat (RANDOMX_PROGRAM_COUNT - 1) times
(

7. The VM is programmed using 128 + 8 * RANDOMX_PROGRAM_SIZE random
bytes using generator gen4.

8. The VM is executed.
9. A new 64-byte seed is calculated as S = Hash512(RegisterFile).
10. Set gen4.state = S (modify the state of the generator).

(continues on next page)

1 https://github.com/tevador/RandomX/blob/v1.0.4/doc/specs.md
2 https://github.com/tevador/RandomX/blob/v1.0.4/doc/design.md
3 https://github.com/tevador/RandomX/blob/v1.0.4/doc/configuration.md
4 https://github.com/tevador/RandomX/releases/tag/v1.0.4
5 https://github.com/tevador/RandomX/commit/5d815c57c0860f39dbe0eb8bdf1e9dd3d2dabe3d
6 https://github.com/tevador/RandomX/blob/v1.0.4/doc/specs.md#2-algorithm-description
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(continued from previous page)
)

7. The VM is programmed using 128 + 8 * RANDOMX_PROGRAM_SIZE random bytes
using generator gen4.

8. The VM is executed.
12. Scratchpad fingerprint is calculated as A = AesHash1R(Scratchpad).
13. Bytes 192-255 of the Register File are set to the value of A.
14. Result is calculated as R = Hash256(RegisterFile).

This algorithm is implemented in the src/randomx.cpp file, more precisely in the ran-
domx_calculate_hash function. We associate the following lines of code with the different
steps of the algorithm description in the comments.

void randomx_calculate_hash(randomx_vm *machine, const void *input, size_t
inputSize, void *output) {

alignas(16) uint64_t tempHash[8];
// Steps 1 and 2
blake2b(tempHash, sizeof(tempHash), input, inputSize, nullptr, 0);
// Steps 3 and 4
machine->initScratchpad(&tempHash);
// Step 6
machine->resetRoundingMode();
for (int chain = 0; chain < RANDOMX_PROGRAM_COUNT - 1; ++chain) {

// Steps 5, 7, 8 and 10
machine->run(&tempHash);
// Step 9
blake2b(tempHash, sizeof(tempHash), machine->getRegisterFile(),

sizeof(randomx::RegisterFile), nullptr, 0);
}
// Steps 7, 8 and 10
machine->run(&tempHash);
// Steps 12, 13 and 14
machine->getFinalResult(output, RANDOMX_HASH_SIZE);

}

4.3 Observations

Here are a few general observations.
The observations more specifically linked to the proof-of-work (PoW) cryptographic components
or to the comparison with the code will be explained respectively in Section 5 and Section 6.

4.3.1 Usage of hardcoded strings

RandomX is using defined strings at several places in its algorithm:
• RANDOMX_ARGON_SALT = "RandomX\x03",
• AesGenerator1R keys are computed from Hash512(AesGenerator1R_seed) with AesGen-

erator1R_seed = "RandomX AesGenerator1R keys" ,
• AesGenerator4R keys 0-3 are computed from Hash512(AesGenerator4R_seed1) with Aes-

Generator4R_seed1 = "RandomX AesGenerator4R keys 0-3",
• AesGenerator4R keys 4-7 are computed from Hash512(AesGenerator4R_seed2) with Aes-
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Generator4R_seed2 = "RandomX AesGenerator4R keys 4-7",
• AesHash1R state is computed from Hash512(AesHash1R_seed) with AesHash1R_seed1

= "RandomX AesHash1R state",
• AesHash1R xkeys are computed from Hash256(AesHash1R_seed2) with Ae-

sHash1R_seed2 = "RandomX AesHash1R xkeys",
• SuperScalarHash XOR constants are computed from a subset of

Hash512(SuperScalarHash_seed) with SuperScalarHash_seed = "RandomX Su-
perScalarHash initialize".

Currently only the first one, RANDOMX_ARGON_SALT, is meant to be diversified for us-
ages in other contexts. E.g., Arweave has chosen "RandomX-Arweave\x01"7 and Wownero
"RandomWOW\x01"8. The other strings don’t have official names, we came up with our
own labeling in the list above by convenience.

Observation RNDX-N1: Provided that they diversify the other existing configuration
parameters, RandomX alternatives can work with the various seed strings hardcoded with
identical values. Nevertheless, in our opinion, these protocol personalization strings should
become part of the configuration parameters. We recommend to allow the customization of
these strings and then derive the constants and tables dynamically during the compilation
or startup.

For the following reasons:
• Such defined strings in cryptographic protocols are typically present, beside their nothing-

up-my-sleeve nature, to allow easy reuse in different contexts with a content bound to their
usage, here e.g., we would have "RandomX Arweave AesGenerator1R keys" etc.

• These are very safe parameters to modify, contrary to some other parameters of RandomX
which require careful attention before being changed. So it costs no design effort to choose
other values for other usages.

• If they become part of the configuration, in order to keep the implementation flexible, the
hashes would need to be computed during the compilation phase or the first run phase (as
well as other derived values such as the soft-AES LUTs) which is in our opinion a good
thing for peer review, rather than having directly hardcoded values in the implementation
for which there is today no explanation in the code itself. Indeed, today one must look in
the specifications to understand and verify by computing and comparing these hardcoded
values.

• In the process, RandomX could adapt AesHash1R xkeys creation and usage as it was done
for AesGenerator4R, mostly for aesthetic reasons and to avoid people (wrongly) raising
concerns even if it has been demonstrated in previous reports and discussions that it’s
not a security issue to reuse xkey0 and xkey1. Each of the other key derivations is using
Hash512, so RandomX could just use Hash512 instead of Hash256 for these xkeys and get
4 of them.

The observations on hardcoded strings were shared in Issue #1039.
7 https://github.com/ArweaveTeam/RandomX/blob/arweave/src/configuration.h
8 https://github.com/wownero/RandomWOW/blob/master/src/configuration.h
9 https://github.com/tevador/RandomX/issues/103
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4.3.2 Warnings against RandomX components reuse

In the previous audits and subsequent discussions, it has been made clear that some of the
RandomX cryptographic components are safe in their specific usage despite their lack of more
general cryptographic properties. See also Section 5.3 for our comments on these components.
Still, some developers could be tempted to reuse these components without a proper use case
analysis.

Observation RNDX-N2: It is also possible to add warnings or disclaimers around
some of the RandomX cryptographic components (AesGenerator1R, AesGenerator4R and
AesHash1R) in the specifications and design notes to highlight the dangers of reusing them
in other contexts different from this PoW, because of their lack of general cryptographic
properties.

Ref.: 19-07-610-REP Quarkslab SAS 9
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5. Cryptographic primitives
In this PoW algorithm, we note that some cryptographic primitives are used. However, some
of them are not chosen specifically for a cryptographic usage and are only common primitives
that may serve the goal of the ASIC resistance work. These primitives are:

• BLAKE2b [BLA] which corresponds to Hash512 and Hash256 in the algorithm descrip-
tion;

• Argon2d [Arg] and
• AES [AES] which is used in AesGenerator1R, AesGenerator4R and AesHash1R.

5.1 BLAKE2b

The BLAKE2b hash function can produce hash values of different bit lengths, and especially
of 256 bits and 512 bits, as mandatory by the use of Hash256 and Hash512. Note that in
the implementation, the BLAKE2b calls refer to the reference implementation1, which is not
as optimized as a less portable version compatible with modern CPU providing vectorization
such as the avx2 ones (see for example the benchmarks provided by SUPERCOP2). Note that
this remark is already discussed in Issue #603, which is part of [Kud]. However, since the hash
function is called only 2+RANDOMX_PROGRAM_COUNT, where RANDOMX_PROGRAM_COUNT = 8 in the
default configuration, this will not give a decisive advantage to a miner using optimized im-
plementation of the hash function. BLAKE2b is a state-of-the-art cryptographic hash function
which is optimized to be efficient on 64-bit platforms, its use for producing cryptographic or
non-cryptographic hash values is fair.
Note that following the RFC [RFC], the input of BLAKE2b must be less than 2128 bytes. The
length of H, which is of arbitrary length according to the specifications, must not exceed this
value. The other uses of BLAKE2b are with 256-byte inputs.

5.2 Argon2d

The Argon2d hash function is a parametrized hash function among which RandomX chooses to
set:

• the degree of parallelism p to RANDOMX_ARGON_LANES = 1;
• the memory size to RANDOMX_ARGON_MEMORY = 262144 = 218 KiB, which is in the range

[8p, 232) KiB according to the specifications and
• the number of iterations to RANDOMX_ARGON_ITERATIONS = 3, which is in the range [1, 232)

according to the specifications.

The primary inputs of such a hash function are:
• a string K of 0 to 60 bytes, which is in the range [0, 232) bytes, and
• a nonce/salt of 8 bytes RANDOMX_ARGON_SALT = RandomX\x03 which is in the range [8, 232)

bytes of acceptable lengths.
1 https://github.com/BLAKE2/BLAKE2
2 https://bench.cr.yp.to/impl-hash/blake2b.html
3 https://github.com/tevador/RandomX/issues/60
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As in BLAKE2b, the reference implementation of Argon2d is used, which is not the fastest one
for modern CPU. The gain by using an efficient implementation must, however, be negligible
compared to using the reference implementation. Argon2d is a state-of-the-art cryptographic
hash function, its use for producing cryptographic or non-cryptographic hash values is fair.
Nevertheless, there is a risk of misuse of Argon2d for cryptocurrencies using RandomX with
their own parameters.
Indeed, the configuration documentation doesn’t enforce the salt size to be at least 8 bytes:
"RANDOMX_ARGON_SALT: Salt value for Cache initialization. Permitted values: Any
string of byte values."
The Argon code itself has means to enforce it:

Listing 5.1: argon2.h
# define ARGON2_MIN_SALT_LENGTH UINT32_C(8)
# define ARGON2_MAX_SALT_LENGTH UINT32_C(0xFFFFFFFF)

Listing 5.2: argon2_core.c
// in rxa2_validate_inputs function
if (ARGON2_MIN_SALT_LENGTH > context->saltlen) {

return ARGON2_SALT_TOO_SHORT;
}
if (ARGON2_MAX_SALT_LENGTH < context->saltlen) {

return ARGON2_SALT_TOO_LONG;
}

Nevertheless, nothing prevents someone to configure RandomX to use a shorter salt and the
code won’t raise an alarm as rxa2_validate_inputs is actually never used.

Observation RNDX-M1: To prevent the use of an abnormally short Argon2d
salt, the documentation of the configuration should clarify the allowed values of RAN-
DOMX_ARGON_SALT as being in the range going from 8 to 232 − 1 (inclusive) and
the code should check the Argon2d parameters, e.g., by using a patched version of
rxa2_validate_inputs (skipping the check on the length of the output as RandomX does
not use the output).

Hopefully the two other cryptocurrencies we are aware of are using a customized configuration
with a long enough Argon2d salt: Arweave with RANDOMX_ARGON_SALT = "RandomX-
Arweave\x01" and Wownero with RANDOMX_ARGON_SALT = "RandomWOW\x01".
Similarly, even if these are more unlikely to be misused:
RANDOMX_ARGON_LANES and RANDOMX_ARGON_ITERATIONS theoretical upper
bounds are not specified in the configuration documentation.

Observation RNDX-L1: Permitted values for RANDOMX_ARGON_LANES should
be upper bounded in the configuration document to 224 − 1 (inclusive) and RAN-
DOMX_ARGON_ITERATIONS should be upper bounded to 232 − 1 (inclusive).

Concerning RANDOMX_ARGON_MEMORY, the upper bound seems correct under the as-
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sumption that CHAR_BIT=8 and sizeof(void*) >= 4 on all target platforms, but the minimum
value is wrong.

Observation RNDX-L2: Permitted values for RANDOMX_ARGON_MEMORY should
be lower bounded in the configuration document to 8 (as ARGON2_SYNC_POINTS = 4)
and not 1.

Let’s note that, even if Argon2d is not in the critical path and is not running under its fastest
implementation, its usage can probably be accelerated by bumping the hardcoded value con-
text.threads = 1 in case RANDOMX_ARGON_LANES > 1.
The observations on Argon2d were shared in Issue #1014.

5.3 AES

The AES encryption/decryption scheme is never used as such with an appropriate number of
rounds to perform a full encryption or decryption of a message. Only a minimal number of
rounds are used, where, according to the specifications of the custom functions based on AES5:

• an AES encryption round refers to the application of the ShiftRows, SubBytes and Mix-
Columns transformations followed by a XOR with the round key and

• an AES decryption round refers to the application of inverse ShiftRows, inverse SubBytes
and inverse MixColumns transformations followed by a XOR with the round key.

The three custom functions build upon these AES rounds are described in the following.

5.3.1 AesGenerator1R

This first function is used to fill the Scratchpad. It was noted by a previous audit [ToB] that
one round of AES is not sufficient to make a full diffusion step. The comment6 of the authors
of RandomX is that this first and only call to AesGenerator1R does not decrease sufficiently
the bias of the first executed program to be modified. We agree with this argument.
The keys of the AesGenerator1R are defined in a nothing-up-my-sleeve way, coming from the
output of BLAKE2b on the sentence RandomX AesGenerator1R keys. Each key is different
from the others, so we do not see any way to decrease the time spent, even if the input states
for the encryption (respectively decryption) steps are the same. Indeed, if the input states are
the same, the ShiftRows, SubBytes and MixColumns transformations will be the same since
they do not depend on the key: this is nevertheless improbable, since if we consider that
BLAKE2b acts as a random function, having two identical states only appears with a probability
of 1/2128 ≈ 2.94 · 10−139.
The use of AesGenerator1R is fair in this context.

4 https://github.com/tevador/RandomX/issues/101
5 https://github.com/tevador/RandomX/blob/master/doc/specs.md#3-custom-functions
6 https://github.com/hyc/RandomxAudits/blob/master/Comment-TrailOfBits.md#

1-single-aes-rounds-used-in-aesgenerator
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5.3.2 AesGenerator4R

Contrary to AesGenerator1R, the AesGenerator4R better mixes the bits of the input states.
Each state of this function also comes from the BLAKE2b hash functions, which itself uses
outputs of the VM as inputs. The keys are also generated in a nothing-up-my-sleeve way. We
do not see any way to bypass some operations of this function. Indeed:

• if input states are the same for the decryption (respectively encryption) stages, since the
chains use different keys, it is not possible to deduce from a chain the intermediate results
of another chain;

• since the decryption chains use the key in the same order than the one of encryption
chains, the output of an encryption (respectively decryption) chain which is the same
as the input of a decryption (respectively encryption) chain may not help to deduce the
output of this last chain.

The use of AesGenerator4R is therefore fair in this context.

5.3.3 AesHash1R

The last custom function based on AES is AesHash1R, which is used only one time by the
algorithm. It is acknowledged by the authors that this function cannot serve as a cryptographic
hash (see comments7 about [X41]).
Unlike in the other custom functions, the inputs are the keys coming from the previous execution
of the VM, and the states are defined by the implementation. The only way we see to speed
up the computation is to have, in the second stage of the functions, the same input states
for the decryption (respectively encryption) stages, which cannot be assumed in a highly large
proportion of the executions of this function. Generating four keys instead of two with Hash512
instead of Hash256 will completely break this possibility.
We think that the AesHash1R may be used as a non-cryptographic hash function in this con-
text8.

5.4 Conclusion

The cryptographic primitives used in RandomX may serve their purposes, even if the crypto-
graphic properties of these primitives are not always their main quality in the RandomX context
and they should be avoided in other contexts.

7 https://github.com/hyc/RandomxAudits/blob/master/Comment-X41.md#43-weaknesses-in-the-cryptographic-implementations-and-algorithms
8 https://github.com/tevador/RandomX/issues/62
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6. Code review

6.1 Audited versions

The reviewed versions of the code were:
• the tagged version 1.0.4 of RandomX1 and
• all the subsequent commits until commit 5d815c57c0860f392.

Most of the code of RandomX is written in C++ or C, with some assembly files.

6.2 Dependencies

This project does not depend on external libraries except the standard ones. However,
note that the implementations of two cryptographic hash functions are the ones provided by
the upstream projects https://github.com/BLAKE2/BLAKE2 and https://github.com/p-h-c/
phc-winner-argon2. These two projects are placed under the Creative Commons CC0 1.0 li-
cense3. This license allows to include the implementations with all the needed modifications in
the RandomX project, which is itself placed under the 3-Clause BSD license.

6.3 Overview

The codebase review was performed manually, that is, no automated vulnerability scanner tool
was employed.
We carried out two main tasks during the review:

• validating that the code matches the specifications, and
• vulnerability analysis.

Most of the findings were along the lines of those reported by previous security assessments
[ToB] [Kud] [X41]. Consequently, our recommendations will be aligned to the ones provided on
each of the respective reports.
On the code validation part, we found that the code follows the specifications very closely, and
no major issue was identified. On the vulnerability analysis, we have to consider that the attack
surface is fairly small, given the nature of the project, as it interacts very little with external
sources. Therefore, only few observations were made.

6.4 Code structure

The code is well structured in terms of abstraction layers and is divided in well-defined compo-
nents which eases the reviewing task and provides a quick overall understanding of the project.
Code-wise the most intricate parts of the project are the JIT compiler and the SuperscalarHash
program generation. The first given the inherently complex nature of such component, the
second given the number of rules and restrictions involved in the generation of such a program.

1 https://github.com/tevador/RandomX/releases/tag/v1.0.4
2 https://github.com/tevador/RandomX/commit/5d815c57c0860f39dbe0eb8bdf1e9dd3d2dabe3d
3 Note that the second project may also be placed under the Apache Public License 2.0 for convenience reasons.
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6.4.1 JITted vs Interpreted

The VM is implemented both in a native and in an interpreted way. As the time of writing
this report, only support for the x86_64 architecture is provided. However, as it can be seen
in the codebase, there are plans to extend it to other architectures such as A64. The VM
code is encapsulated in two main classes CompiledVM and InterpretedVM, which are further
subdivided into CompiledLightVM and InterpretedLightVM, respectively.
However, the core logic of the aforementioned VMs is divided among two components: JitCom-
pilerX86 and BytecodeMachine.

6.4.2 Cryptographic primitives

Similarly to the rest of the code, the cryptographic functions are split into their own respective
components. In this case, we have the two main algorithms Blake2 and Argon2, along with the
implementation of AES and the hash primitives on top of them.

6.5 Observations

Here we provide a list of issues that we do not consider to be critical but that we highly
recommend to take care in future releases of RandomX.

6.5.1 Instruction semantics consistency

RandomX uses a complex instruction set, which allows both register and memory addressed
operands. In addition, some instructions have complex rules on how the operands are used
(and, for instance, in the case of Superscalar programs, how source and destination registers
are selected as well). Therefore, implementing correctly such instruction set is a difficult and
delicate task.
There are tests in the current version that check for multiple issues, and which involve instruction
encoding, decoding and execution. However, these are mostly performed on the BytecodeMa-
chine code.
We recommend the inclusion of more tests on this matter, especially the comparison between
compiled vs interpreted instruction semantics (this becomes even more relevant considering the
plans of implementing native VM support for other architectures such as A64).
This was also pointed of in previous reports such as [ToB], [Kud], and [X41].

6.5.2 Program memory considerations

The JIT compiler needs the memory allocated to be both writable and executable, although,
not simultaneously. In the case an attacker manages to write to these memory regions there is
a threat the attacker can execute arbitrary code.
As it can be seen below, the memory allocated for the JIT compiler is marked as READ, WRITE
and EXECUTE.
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Listing 6.1: jit_compiler_x86.cpp
JitCompilerX86::JitCompilerX86() {

code = (uint8_t*)allocExecutableMemory(CodeSize);
memcpy(code, codePrologue, prologueSize);
memcpy(code + epilogueOffset, codeEpilogue, epilogueSize);

}

Listing 6.2: virtual_memory.cpp
void* allocExecutableMemory(std::size_t bytes) {

void* mem;
# if defined(_WIN32) || defined(__CYGWIN__)

mem = VirtualAlloc(nullptr, bytes, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
if (mem == nullptr)

throw std::runtime_error(getErrorMessage("allocExecutableMemory - VirtualAlloc
↪→"));
# else

mem = mmap(nullptr, bytes, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_ANONYMOUS |␣
↪→MAP_PRIVATE, -1, 0);

if (mem == MAP_FAILED)
throw std::runtime_error("allocExecutableMemory - mmap failed");

# endif
return mem;

}

This was also stated in the [X41] report, and at the time of writing this document remains
unchanged.
It has been argued and subsequently dismissed because of performance reasons by the developers
of RandomX, however, we have to stress the security risk involving such approach.
Along these lines, and in order to mitigate any issue related to code execution, it is also advisable
to implement some kind of sandbox for RandomX’s programs. Therefore, restricting the system
calls that a running program can make to the bare minimum.

6.5.3 Hard-coded constants

We came across some hard-coded constants in the codebase whose values were not detailed in
the specifications (nor the design documentation) which may lead to unexpected behavior in
case of some of the default parameters change.
The first one was pointed out in the [X41] report, and fixed in a commit subsequent to the one
analyzed here. The other was also fixed, but was not reported as far as we know.

1. Hard-coded CodeSize
The size of the buffer where the compiled code is located is restricted to 64 Kb. At first
glance, this value seems appropriate, however, there is no information about how this value was
calculated. Consequently, it cannot be said for sure whether it could be overflowed or not.

Listing 6.3: jit_compiler_x86.hpp
class Program;
class ProgramConfiguration;
class SuperscalarProgram;

(continues on next page)
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(continued from previous page)
class JitCompilerX86;
class Instruction;

typedef void(JitCompilerX86::*InstructionGeneratorX86)(Instruction&, int);

constexpr uint32_t CodeSize = 64 * 1024;

class JitCompilerX86 {
public:

2. Hard-coded superScalarHashOffset
In this case, an offset within the code buffer is declared as superScalarHashOffet but no
information about how it was calculated is provided. This constant is used in two files:
jit_compiler_x86.cpp and jit_compiler_x86_static.S.

Listing 6.4: jit_compiler_x86.cpp
const int32_t codeSshInitSize = codeProgramEnd - codeShhInit;

const int32_t epilogueOffset = CodeSize - epilogueSize;
constexpr int32_t superScalarHashOffset = 32768;

static const uint8_t REX_ADD_RR[] = { 0x4d, 0x03 };

Listing 6.5: jit_compiler_x86_static.S
init_block_loop:

prefetchw byte ptr [rsi]
mov rbx, rbp
.byte 232 ;# 0xE8 = call
;# .set CALL_LOC,
.int 32768 - (call_offset - DECL(randomx_dataset_init))

6.5.4 CPU utilization in SuperscalarHash Programs

The main purpose of the SuperscalarHash function is "to burn as much power as possible using
only the CPU’s integer ALUs", as stated in the specifications. To achieve its goal, a simulation
of a reference CPU (loosely based on the Ivy Bridge micro-architecture) is performed in order
to produce a computational-intensive program. It is difficult to verify that the program will
use as many features or as intensively as was designed. Although, there are tools such as Intel
vTune4 that can shed some light on this particular issue. This may help to determine if further
steps need to be taken to calibrate this stage to perform as originally intended.

6.5.5 JIT compiler

The JIT compiler is one of the most delicate parts of the codebase for various reasons. Firstly,
most of the code boils down to opcodes, where a single misplaced bit can lead to issue a
completely different assembly instruction. Secondly, the final program generated by the compiler
also has to include all the VM logic. Finally, performance is a key aspect of this component,
therefore, everything has to be finely tuned to maximize it.

4 https://software.intel.com/en-us/vtune
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Including the VM code is not an easy task, take for instance, the x86 JIT compiler (the only
one available at the moment). It is achieved by carefully writing the VM in assembly language
(as can be seen in jit_compiler_x86_static.S and the entire asm directory) and subsequently
putting it all together, along with the JITted instructions, to make sense as a whole.
To clarify this point, we provide a quick overview of the process. A program is built by first
copying into the output buffer an already-compiled prologue (consisting of saving registers
according to the specific calling convention used, which at the moment can be either System V
AMD64 ABI or Microsoft x64, placing arguments in specific registers and initializing some other
ones). It follows the VM’s loop execution5 "header" (also already compiled, and copied into the
buffer). Only at this point, the JITted instructions can be placed into the buffer. Finally, the
Dataset code and the VM’s loop execution "footer" is added. This is a very complex process.
Any modification to this code has to be done very carefully.
The following code snippets show how the compiled version of a program is constructed, as
explained in the previous paragraph.

Listing 6.6: jit_compiler_x86.cpp
JitCompilerX86::JitCompilerX86() {

code = (uint8_t*)allocExecutableMemory(CodeSize);
memcpy(code, codePrologue, prologueSize);
memcpy(code + epilogueOffset, codeEpilogue, epilogueSize);

}

Listing 6.7: jit_compiler_x86.cpp
void JitCompilerX86::generateProgram(Program& prog, ProgramConfiguration& pcfg) {

generateProgramPrologue(prog, pcfg);
memcpy(code + codePos, codeReadDataset, readDatasetSize);
codePos += readDatasetSize;
generateProgramEpilogue(prog);

}

Listing 6.8: jit_compiler_x86.cpp
void JitCompilerX86::generateProgramPrologue(Program& prog, ProgramConfiguration&␣
↪→pcfg) {

instructionOffsets.clear();
for (unsigned i = 0; i < 8; ++i) {

registerUsage[i] = -1;
}
codePos = prologueSize;
memcpy(code + codePos - 48, &pcfg.eMask, sizeof(pcfg.eMask));
emit(REX_XOR_RAX_R64);
emitByte(0xc0 + pcfg.readReg0);
emit(REX_XOR_RAX_R64);
emitByte(0xc0 + pcfg.readReg1);
memcpy(code + codePos, codeLoopLoad, loopLoadSize);
codePos += loopLoadSize;
for (unsigned i = 0; i < prog.getSize(); ++i) {

Instruction& instr = prog(i);
instr.src %= RegistersCount;
instr.dst %= RegistersCount;

(continues on next page)

5 https://github.com/tevador/RandomX/blob/v1.0.4/doc/specs.md#462-loop-execution
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(continued from previous page)
generateCode(instr, i);

}
emit(REX_MOV_RR);
emitByte(0xc0 + pcfg.readReg2);
emit(REX_XOR_EAX);
emitByte(0xc0 + pcfg.readReg3);

}

Listing 6.9: jit_compiler_x86.cpp
void JitCompilerX86::generateProgramEpilogue(Program& prog) {

memcpy(code + codePos, codeLoopStore, loopStoreSize);
codePos += loopStoreSize;
emit(SUB_EBX);
emit(JNZ);
emit32(prologueSize - codePos - 4);
emitByte(JMP);
emit32(epilogueOffset - codePos - 4);

}

To further show the complexity of the JIT compiler, consider the following snippet:

Listing 6.10: jit_compiler_x86_static.S
init_block_loop:

prefetchw byte ptr [rsi]
mov rbx, rbp
.byte 232 ;# 0xE8 = call
;# .set CALL_LOC,
.int 32768 - (call_offset - DECL(randomx_dataset_init))

This piece of code is tailor-made in such a manner that even some call targets are built in a
very specific way in order to fit in the compiled program.
It is hard to assess the correctness of the aforementioned code given its complexity and the
particular way in which is used. There are tests that check the overall working of the JIT
compiler. However, we consider that the project can benefit from the inclusion of tests that
check each part of the JIT compiler as independently as possible.
SuperscalarHash programs present similar issues as they are compiled in a similar fashion.

6.5.6 Superscalar instruction creation

While reviewing the implementation of the Superscalar instruction creation, we found a small
issue for which we could not determine whether it was intended or simply a typing mistake.
As it can be seen in the code excerpt, instructions of type ISUB_R are created using the
type IADD_RS for their opGroup field. This value is later involved in a check within the
selectDestination function (superscalar.cpp#L494 ). However, in this case, the chosen type
(either one of them) doesn’t seem to have an effect on the condition.

Listing 6.11: superscalar.cpp
void create(const SuperscalarInstructionInfo* info, Blake2Generator& gen) {

info_ = info;
(continues on next page)
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(continued from previous page)
reset();
switch (info->getType())
{
case SuperscalarInstructionType::ISUB_R: {

mod_ = 0;
imm32_ = 0;
opGroup_ = SuperscalarInstructionType::IADD_RS;
groupParIsSource_ = true;

} break;

6.5.7 datasetOffset computation

While reviewing the randomx_vm::initialize method, we noticed a mismatch between the im-
plementation and the specifications on how the datasetOffset was handled.
The issue was discussed with Monero Research Lab6.
Concretely, the specifications state: "The datasetOffset is calculated by bitwise AND of quad-
word 13 and the value RANDOMX_DATASET_EXTRA_SIZE / 64. The result is multiplied
by 64." This can be written in an equivalent way with a modulus (%), as it is done in the code:

Listing 6.12: virtual_machine.cpp
addressRegisters >>= 1;
config.readReg3 = 6 + (addressRegisters & 1);
datasetOffset = (program.getEntropy(13) % (randomx::DatasetExtraItems + 1)) *␣
↪→randomx::CacheLineSize;
store64(&config.eMask[0], randomx::getFloatMask(program.getEntropy(14)));
store64(&config.eMask[1], randomx::getFloatMask(program.getEntropy(15)));

But this is true only for specific values of RANDOMX_DATASET_EXTRA_SIZE writable
as (2N − 1) × 64, such as the value chosen in RandomX: 33554368, which can be written as
0x7ffff × 64 or (219 − 1) × 64.
After discussions with Monero Research Lab, it appeared that it was an old restriction
and the code now can support any non-negative integer value divisible by 64 for RAN-
DOMX_DATASET_EXTRA_SIZE.

Observation RNDX-M2: The specifications of the datasetOffset computation must be
adapted to reflect the use of the modulus. The risk exists for other currencies choosing
customized RANDOMX_DATASET_EXTRA_SIZE and implementing alternative clients
based on the specifications to end up with two types of clients giving different PoW hash
results.

To avoid any out-of-band access on the Dataset, some maskings are performed on the addresses.
More specifically, the Dataset is of DatasetSize = RANDOMX_DATASET_BASE_SIZE
+ RANDOMX_DATASET_EXTRA_SIZE and 64-byte accesses are done at addresses
datasetOffset + mx % RANDOMX_DATASET_BASE_SIZE. datasetOffset is 64-byte aligned
between 0 and RANDOMX_DATASET_EXTRA_SIZE included and mx between 0 and RAN-
DOMX_DATASET_BASE_SIZE-64.
In the code, the alignment of mx is done together with then RAN-

6 https://github.com/tevador/RandomX/issues/102
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DOMX_DATASET_BASE_SIZE modulus, here computed in the code by bitwise AND,
which is equivalent because RANDOMX_DATASET_BASE_SIZE must be a power of 2
larger or equal to 64:

Listing 6.13: vm_interpreted.cpp
mem.mx ^= nreg.r[config.readReg2] ^ nreg.r[config.readReg3];
mem.mx &= CacheLineAlignMask;
datasetPrefetch(datasetOffset + mem.mx);
datasetRead(datasetOffset + mem.ma, nreg.r);
std::swap(mem.mx, mem.ma);

Listing 6.14: common.hpp
constexpr size_t CacheLineSize = RANDOMX_DATASET_ITEM_SIZE;
constexpr int ScratchpadSize = RANDOMX_SCRATCHPAD_L3;
constexpr uint32_t CacheLineAlignMask = (RANDOMX_DATASET_BASE_SIZE - 1) & ~
↪→(CacheLineSize - 1);

But in the specifications we don’t see the 64-byte alignment of mx explicitly mentioned in the
VM execution:

• "4.5.3 Registers ma and mx are initialized using the low 32 bits of quadwords 8 and 10 in
little endian format."

• "4.6.2.5. The mx register is XORed with the low 32 bits of registers readReg2 and readReg3
(see Table 4.5.3)."

• "4.6.2.6. A 64-byte Dataset item at address datasetOffset + mx % RAN-
DOMX_DATASET_BASE_SIZE is prefetched from the Dataset (it will be used during
the next iteration)."

There is only a note in 4.1 Dataset definition reminding that "All Dataset accesses read an
aligned 64-byte item."

Observation RNDX-L3: To avoid misunderstandings, we suggest to mention explicitly
the 64-byte alignment of mx in the specifications in 4.6.2.5 (loop). Similarly, the alignment
of ma should be added in 4.5.3 (initialization) or 4.6.2.7 (loop).

In the code, ma is aligned during initialization.

6.5.8 RandomX src == dst handling in instructions

We thought initially there was a possible path to minor optimization by prefetching Scratch-
pad L3 values loaded from fixed addresses when source and destination registers of integer
instructions reading from memory (IADD_M, ISUB_M, IMUL_M, IMULH_M, ISMULH_M,
IXOR_M) were equal and we opened an issue7 to discuss it.
But, to summarize, this would be difficult to deal with situations where Scratchpad L3 data
is overwritten, costing extra checks, while, on the other hand, such fixed address values would
be soon loaded in CPU L1 and could therefore be accessed pretty quickly. And approximation
strategies are not viable given the high probability of prefetched data being overwritten at some
point in the hash computation.

7 https://github.com/tevador/RandomX/issues/105
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Note that the special src == dst handling in the memory-related integer instructions was
not introduced for security reason (same source and destination register could have been used
without issues), but according to Monero Research Lab it was done on purpose to add L3 reads
into the main loop without affecting CPU performance.

6.5.9 Check size of Key

According to the specifications, the size of the key is limited to 60 bytes. However, it doesn’t
seem to be enforced in the code. We compiled the examples files, api-example1.c and api-
example2.cpp, with keys bigger than 60 bytes and both programs ran successfully (at least,
there was no visible sign of any problem). It is yet to determine whether the key was truncated
or used as such.

Observation RNDX-M3: We recommend checking the size of the RandomX input key
although it may require some extra modification as API functions don’t return error codes.
It can also be explicitly stated in the specifications what happens when a longer key is used.

6.5.10 Overall testing considerations

Here we would like to discuss some general considerations regarding tests (we already warned
about some specific issues on previous observations).
RandomX counts with several configurable parameters. Right now testing is carried out using
the default values. However, it is not clear what would happen if some of them were to change
or even if it was considered when they were written at all.
We think the project can benefit from making testing on a modified set of configurations easier.

6.5.11 Code quality

Here we include some overall observations regarded as good practices, some of them already
mentioned in previous reports [ToB] [Kud] [X41]. Altogether they can help avoiding issues and
improve the overall code quality of future releases.

• We noticed the lack of braces in if statements consisting only of one line of code. This
practice is considered to be error-prone and led to serious bugs in the past.

• We also noticed that there are pointer dereferences without checking if indeed these are
non-NULL pointers. Adding such checks, at least in API functions, is a good programming
practice that will certainly pay off as code evolves.

• Finally, using stricter compilation flags can prevent programming errors that can turn
into more serious issues (as well as improving the quality of the code).
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7. Conclusion
Despite a highly complex and radically new subject, RandomX documentation and code were of
very high quality. All the attacks paths we could think of were already taken into consideration,
or at least discussed in previous audits. We reviewed the previous reports and the Monero
Research Lab replies and subsequent code changes and agree with them.
We didn’t find any significant optimization of the proof-of-work algorithm, even with approxi-
mations.
We only found minor inconsistencies and recommendations, mainly with a potential impact
only with alternative configurations but safe in the RandomX configuration and usage. In this
regard, an effort could be done in the provided tests, preparing them to work beyond the default
RandomX configuration and strengthening the testing of the more complex components such
as the JIT version of the VM.
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