core_tests: multisig test now tests multiple inputs

release-v0.4.0.1
moneromooo-monero 7 years ago
parent 98db7ee467
commit 55c2845d1a
No known key found for this signature in database
GPG Key ID: 686F07454D6CEFC3

@ -200,6 +200,7 @@ int main(int argc, char* argv[])
GENERATE_AND_PLAY(gen_rct_tx_rct_altered_extra);
GENERATE_AND_PLAY(gen_multisig_tx_valid_22_1_2);
GENERATE_AND_PLAY(gen_multisig_tx_valid_22_1_2_many_inputs);
GENERATE_AND_PLAY(gen_multisig_tx_valid_22_2_1);
GENERATE_AND_PLAY(gen_multisig_tx_valid_33_1_23);
GENERATE_AND_PLAY(gen_multisig_tx_valid_33_3_21);
@ -208,6 +209,7 @@ int main(int argc, char* argv[])
GENERATE_AND_PLAY(gen_multisig_tx_valid_23_2_1);
GENERATE_AND_PLAY(gen_multisig_tx_valid_23_2_3);
GENERATE_AND_PLAY(gen_multisig_tx_valid_45_1_234);
GENERATE_AND_PLAY(gen_multisig_tx_valid_45_4_135_many_inputs);
GENERATE_AND_PLAY(gen_multisig_tx_valid_89_3_1245789);
GENERATE_AND_PLAY(gen_multisig_tx_invalid_23_1__no_threshold);
GENERATE_AND_PLAY(gen_multisig_tx_invalid_45_5_23_no_threshold);

@ -31,6 +31,7 @@
#include "ringct/rctSigs.h"
#include "cryptonote_basic/cryptonote_basic.h"
#include "multisig/multisig.h"
#include "common/apply_permutation.h"
#include "chaingen.h"
#include "multisig.h"
@ -44,7 +45,7 @@ using namespace cryptonote;
// Tests
bool gen_multisig_tx_validation_base::generate_with(std::vector<test_event_entry>& events,
int mixin, uint64_t amount_paid, bool valid,
size_t inputs, size_t mixin, uint64_t amount_paid, bool valid,
size_t threshold, size_t total, size_t creator, std::vector<size_t> signers,
const std::function<void(std::vector<tx_source_entry> &sources, std::vector<tx_destination_entry> &destinations)> &pre_tx,
const std::function<void(transaction &tx)> &post_tx) const
@ -58,6 +59,7 @@ bool gen_multisig_tx_validation_base::generate_with(std::vector<test_event_entry
#ifdef NO_MULTISIG
CHECK_AND_ASSERT_MES(total <= 5, false, "Unsupported scheme");
#endif
CHECK_AND_ASSERT_MES(inputs >= 1 && inputs <= 8, false, "Inputs should between 1 and 8");
// given as 1 based for clarity
--creator;
@ -83,14 +85,14 @@ bool gen_multisig_tx_validation_base::generate_with(std::vector<test_event_entry
// create 8 miner accounts, and have them mine the next 8 blocks
// they will have a coinbase with a single out that's pseudo rct
const size_t n_coinbases = 8;
constexpr size_t n_coinbases = 8;
cryptonote::account_base miner_accounts[n_coinbases];
const cryptonote::block *prev_block = &blk_0;
cryptonote::block blocks[n_coinbases];
for (size_t n = 0; n < n_coinbases; ++n) {
// the first block goes to the multisig account
miner_accounts[n].generate();
account_base &account = n == 0 ? miner_account[creator] : miner_accounts[n];
account_base &account = n < inputs ? miner_account[creator] : miner_accounts[n];
CHECK_AND_ASSERT_MES(generator.construct_block_manually(blocks[n], *prev_block, account,
test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version | test_generator::bf_max_outs,
4, 4, prev_block->timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
@ -120,126 +122,147 @@ bool gen_multisig_tx_validation_base::generate_with(std::vector<test_event_entry
blk_r = blk_last;
}
const crypto::public_key tx_pub_key = get_tx_pub_key_from_extra(blocks[0].miner_tx);
MDEBUG("tx_pub_key: " << tx_pub_key);
const crypto::public_key output_pub_key = boost::get<txout_to_key>(blocks[0].miner_tx.vout[0].target).key;
MDEBUG("output_pub_key: " << output_pub_key);
cryptonote::keypair in_ephemeral;
crypto::public_key tx_pub_key[n_coinbases];
crypto::public_key output_pub_key[n_coinbases];
for (size_t n = 0; n < n_coinbases; ++n)
{
tx_pub_key[n] = get_tx_pub_key_from_extra(blocks[n].miner_tx);
MDEBUG("tx_pub_key: " << tx_pub_key);
output_pub_key[n] = boost::get<txout_to_key>(blocks[n].miner_tx.vout[0].target).key;
MDEBUG("output_pub_key: " << output_pub_key);
}
std::unordered_map<crypto::public_key, cryptonote::subaddress_index> subaddresses;
subaddresses[miner_account[0].get_keys().m_account_address.m_spend_public_key] = {0,0};
#ifndef NO_MULTISIG
// create k/L/R/ki for that output we're going to spend
std::vector<std::vector<crypto::secret_key>> account_k(total);
std::vector<std::vector<crypto::public_key>> account_L(total);
std::vector<std::vector<crypto::public_key>> account_R(total);
std::vector<std::vector<crypto::key_image>> account_ki(total);
std::vector<std::vector<std::vector<crypto::secret_key>>> account_k(total);
std::vector<std::vector<std::vector<crypto::public_key>>> account_L(total);
std::vector<std::vector<std::vector<crypto::public_key>>> account_R(total);
std::vector<std::vector<std::vector<crypto::key_image>>> account_ki(total);
std::vector<crypto::public_key> additional_tx_keys;
std::unordered_map<crypto::public_key, cryptonote::subaddress_index> subaddresses;
subaddresses[miner_account[0].get_keys().m_account_address.m_spend_public_key] = {0,0};
for (size_t msidx = 0; msidx < total; ++msidx)
{
CHECK_AND_ASSERT_MES(miner_account[msidx].get_keys().m_account_address.m_spend_public_key == miner_account[0].get_keys().m_account_address.m_spend_public_key,
false, "Mismatched spend public keys");
size_t nlr = threshold < total ? threshold - 1 : 1;
account_L[msidx].resize(nlr);
account_R[msidx].resize(nlr);
for (size_t n = 0; n < nlr; ++n)
{
account_k[msidx].push_back(rct::rct2sk(rct::skGen()));
cryptonote::generate_multisig_LR(output_pub_key, account_k[msidx][n], account_L[msidx][n], account_R[msidx][n]);
}
size_t numki = miner_account[msidx].get_multisig_keys().size();
account_ki[msidx].resize(numki);
for (size_t kiidx = 0; kiidx < numki; ++kiidx)
{
r = cryptonote::generate_multisig_key_image(miner_account[msidx].get_keys(), kiidx, output_pub_key, account_ki[msidx][kiidx]);
CHECK_AND_ASSERT_MES(r, false, "Failed to generate multisig export key image");
}
MDEBUG("Party " << msidx << ":");
MDEBUG("spend: sec " << miner_account[msidx].get_keys().m_spend_secret_key << ", pub " << miner_account[msidx].get_keys().m_account_address.m_spend_public_key);
MDEBUG("view: sec " << miner_account[msidx].get_keys().m_view_secret_key << ", pub " << miner_account[msidx].get_keys().m_account_address.m_view_public_key);
for (const auto &k: miner_account[msidx].get_multisig_keys())
MDEBUG("msk: " << k);
for (size_t n = 0; n < account_k[msidx].size(); ++n)
account_k[msidx].resize(inputs);
account_L[msidx].resize(inputs);
account_R[msidx].resize(inputs);
account_ki[msidx].resize(inputs);
for (size_t tdidx = 0; tdidx < inputs; ++tdidx)
{
MDEBUG("k: " << account_k[msidx][n]);
MDEBUG("L: " << account_L[msidx][n]);
MDEBUG("R: " << account_R[msidx][n]);
account_L[msidx][tdidx].resize(nlr);
account_R[msidx][tdidx].resize(nlr);
for (size_t n = 0; n < nlr; ++n)
{
account_k[msidx][tdidx].push_back(rct::rct2sk(rct::skGen()));
cryptonote::generate_multisig_LR(output_pub_key[tdidx], account_k[msidx][tdidx][n], account_L[msidx][tdidx][n], account_R[msidx][tdidx][n]);
}
size_t numki = miner_account[msidx].get_multisig_keys().size();
account_ki[msidx][tdidx].resize(numki);
for (size_t kiidx = 0; kiidx < numki; ++kiidx)
{
r = cryptonote::generate_multisig_key_image(miner_account[msidx].get_keys(), kiidx, output_pub_key[tdidx], account_ki[msidx][tdidx][kiidx]);
CHECK_AND_ASSERT_MES(r, false, "Failed to generate multisig export key image");
}
MDEBUG("Party " << msidx << ":");
MDEBUG("spend: sec " << miner_account[msidx].get_keys().m_spend_secret_key << ", pub " << miner_account[msidx].get_keys().m_account_address.m_spend_public_key);
MDEBUG("view: sec " << miner_account[msidx].get_keys().m_view_secret_key << ", pub " << miner_account[msidx].get_keys().m_account_address.m_view_public_key);
for (const auto &k: miner_account[msidx].get_multisig_keys())
MDEBUG("msk: " << k);
for (size_t n = 0; n < account_k[msidx][tdidx].size(); ++n)
{
MDEBUG("k: " << account_k[msidx][tdidx][n]);
MDEBUG("L: " << account_L[msidx][tdidx][n]);
MDEBUG("R: " << account_R[msidx][tdidx][n]);
}
for (const auto &ki: account_ki[msidx][tdidx])
MDEBUG("ki: " << ki);
}
for (const auto &ki: account_ki[msidx])
MDEBUG("ki: " << ki);
}
#endif
// create kLRki
rct::multisig_kLRki kLRki;
#ifdef NO_MULTISIG
kLRki = {rct::zero(), rct::zero(), rct::zero(), rct::zero()};
#else
kLRki.k = rct::sk2rct(account_k[creator][0]);
kLRki.L = rct::pk2rct(account_L[creator][0]);
kLRki.R = rct::pk2rct(account_R[creator][0]);
MDEBUG("Starting with k " << kLRki.k);
MDEBUG("Starting with L " << kLRki.L);
MDEBUG("Starting with R " << kLRki.R);
std::vector<rct::multisig_kLRki> kLRkis;
std::unordered_set<crypto::public_key> used_L;
for (size_t msidx = 0; msidx < total; ++msidx)
for (size_t tdidx = 0; tdidx < inputs; ++tdidx)
{
if (msidx == creator)
continue;
if (std::find(signers.begin(), signers.end(), msidx) == signers.end())
continue;
for (size_t lr = 0; lr < account_L[msidx].size(); ++lr)
kLRkis.push_back(rct::multisig_kLRki());
rct::multisig_kLRki &kLRki = kLRkis.back();
#ifdef NO_MULTISIG
kLRki = {rct::zero(), rct::zero(), rct::zero(), rct::zero()};
#else
kLRki.k = rct::sk2rct(account_k[creator][tdidx][0]);
kLRki.L = rct::pk2rct(account_L[creator][tdidx][0]);
kLRki.R = rct::pk2rct(account_R[creator][tdidx][0]);
MDEBUG("Starting with k " << kLRki.k);
MDEBUG("Starting with L " << kLRki.L);
MDEBUG("Starting with R " << kLRki.R);
for (size_t msidx = 0; msidx < total; ++msidx)
{
if (used_L.find(account_L[msidx][lr]) == used_L.end())
if (msidx == creator)
continue;
if (std::find(signers.begin(), signers.end(), msidx) == signers.end())
continue;
for (size_t lr = 0; lr < account_L[msidx][tdidx].size(); ++lr)
{
used_L.insert(account_L[msidx][lr]);
MDEBUG("Adding L " << account_L[msidx][lr] << " (for k " << account_k[msidx][lr] << ")");
MDEBUG("Adding R " << account_R[msidx][lr]);
rct::addKeys((rct::key&)kLRki.L, kLRki.L, rct::pk2rct(account_L[msidx][lr]));
rct::addKeys((rct::key&)kLRki.R, kLRki.R, rct::pk2rct(account_R[msidx][lr]));
break;
if (used_L.find(account_L[msidx][tdidx][lr]) == used_L.end())
{
used_L.insert(account_L[msidx][tdidx][lr]);
MDEBUG("Adding L " << account_L[msidx][tdidx][lr] << " (for k " << account_k[msidx][tdidx][lr] << ")");
MDEBUG("Adding R " << account_R[msidx][tdidx][lr]);
rct::addKeys((rct::key&)kLRki.L, kLRki.L, rct::pk2rct(account_L[msidx][tdidx][lr]));
rct::addKeys((rct::key&)kLRki.R, kLRki.R, rct::pk2rct(account_R[msidx][tdidx][lr]));
break;
}
}
}
}
std::vector<crypto::key_image> pkis;
for (size_t msidx = 0; msidx < total; ++msidx)
for (size_t n = 0; n < account_ki[msidx].size(); ++n)
pkis.push_back(account_ki[msidx][n]);
r = cryptonote::generate_multisig_composite_key_image(miner_account[0].get_keys(), subaddresses, output_pub_key, tx_pub_key, additional_tx_keys, 0, pkis, (crypto::key_image&)kLRki.ki);
CHECK_AND_ASSERT_MES(r, false, "Failed to generate composite key image");
MDEBUG("composite ki: " << kLRki.ki);
MDEBUG("L: " << kLRki.L);
MDEBUG("R: " << kLRki.R);
for (size_t n = 1; n < total; ++n)
{
rct::key ki;
r = cryptonote::generate_multisig_composite_key_image(miner_account[n].get_keys(), subaddresses, output_pub_key, tx_pub_key, additional_tx_keys, 0, pkis, (crypto::key_image&)ki);
std::vector<crypto::key_image> pkis;
for (size_t msidx = 0; msidx < total; ++msidx)
for (size_t n = 0; n < account_ki[msidx][tdidx].size(); ++n)
pkis.push_back(account_ki[msidx][tdidx][n]);
r = cryptonote::generate_multisig_composite_key_image(miner_account[0].get_keys(), subaddresses, output_pub_key[tdidx], tx_pub_key[tdidx], additional_tx_keys, 0, pkis, (crypto::key_image&)kLRki.ki);
CHECK_AND_ASSERT_MES(r, false, "Failed to generate composite key image");
CHECK_AND_ASSERT_MES(kLRki.ki == ki, false, "Composite key images do not match");
MDEBUG("composite ki: " << kLRki.ki);
MDEBUG("L: " << kLRki.L);
MDEBUG("R: " << kLRki.R);
for (size_t n = 1; n < total; ++n)
{
rct::key ki;
r = cryptonote::generate_multisig_composite_key_image(miner_account[n].get_keys(), subaddresses, output_pub_key[tdidx], tx_pub_key[tdidx], additional_tx_keys, 0, pkis, (crypto::key_image&)ki);
CHECK_AND_ASSERT_MES(r, false, "Failed to generate composite key image");
CHECK_AND_ASSERT_MES(kLRki.ki == ki, false, "Composite key images do not match");
}
}
#endif
// create a tx: we have 8 outputs, all from coinbase, so "fake" rct
// create a tx: we have 8 outputs, all from coinbase, so "fake" rct - use 2
std::vector<tx_source_entry> sources;
sources.resize(1);
tx_source_entry& src = sources.back();
src.real_output = 0;
src.amount = blocks[0].miner_tx.vout[0].amount;
src.real_out_tx_key = tx_pub_key;
src.real_output_in_tx_index = 0;
src.mask = rct::identity();
src.rct = true;
src.multisig_kLRki = kLRki;
for (int m = 0; m <= mixin; ++m)
for (size_t n = 0; n < inputs; ++n)
{
rct::ctkey ctkey;
ctkey.dest = rct::pk2rct(boost::get<txout_to_key>(blocks[m].miner_tx.vout[0].target).key);
MDEBUG("using " << (m == 0 ? "real" : "fake") << " input " << ctkey.dest);
ctkey.mask = rct::commit(blocks[m].miner_tx.vout[0].amount, rct::identity()); // since those are coinbases, the masks are known
src.outputs.push_back(std::make_pair(m, ctkey));
sources.resize(sources.size() + 1);
tx_source_entry& src = sources.back();
src.real_output = n;
src.amount = blocks[n].miner_tx.vout[0].amount;
src.real_out_tx_key = tx_pub_key[n];
src.real_output_in_tx_index = 0;
src.mask = rct::identity();
src.rct = true;
src.multisig_kLRki = kLRkis[n];
for (size_t m = 0; m <= mixin; ++m)
{
rct::ctkey ctkey;
ctkey.dest = rct::pk2rct(boost::get<txout_to_key>(blocks[m].miner_tx.vout[0].target).key);
MDEBUG("using " << (m == n ? "real" : "fake") << " input " << ctkey.dest);
ctkey.mask = rct::commit(blocks[m].miner_tx.vout[0].amount, rct::identity()); // since those are coinbases, the masks are known
src.outputs.push_back(std::make_pair(m, ctkey));
}
}
//fill outputs entry
@ -261,9 +284,26 @@ bool gen_multisig_tx_validation_base::generate_with(std::vector<test_event_entry
rct::multisig_out *msoutp = &msout;
#endif
std::vector<crypto::secret_key> additional_tx_secret_keys;
auto sources_copy = sources;
r = construct_tx_and_get_tx_key(miner_account[creator].get_keys(), subaddresses, sources, destinations, boost::none, std::vector<uint8_t>(), tx, 0, tx_key, additional_tx_secret_keys, true, false, msoutp);
CHECK_AND_ASSERT_MES(r, false, "failed to construct transaction");
#ifndef NO_MULTISIG
// work out the permutation done on sources
std::vector<size_t> ins_order;
for (size_t n = 0; n < sources.size(); ++n)
{
for (size_t idx = 0; idx < sources_copy.size(); ++idx)
{
CHECK_AND_ASSERT_MES((size_t)sources_copy[idx].real_output < sources_copy[idx].outputs.size(),
false, "Invalid real_output");
if (sources_copy[idx].outputs[sources_copy[idx].real_output].second.dest == sources[n].outputs[sources[n].real_output].second.dest)
ins_order.push_back(idx);
}
}
CHECK_AND_ASSERT_MES(ins_order.size() == sources.size(), false, "Failed to work out sources permutation");
#endif
#ifndef NO_MULTISIG
// sign
std::unordered_set<crypto::secret_key> used_keys;
@ -285,20 +325,25 @@ bool gen_multisig_tx_validation_base::generate_with(std::vector<test_event_entry
}
CHECK_AND_ASSERT_MES(!(skey == rct::zero()), false, "failed to find secret multisig key to sign transaction");
std::vector<unsigned int> indices;
for (const auto &src: sources)
for (const auto &src: sources_copy)
indices.push_back(src.real_output);
rct::keyV k;
k.push_back(rct::zero());
for (size_t n = 0; n < account_k[signer].size(); ++n)
for (size_t tdidx = 0; tdidx < inputs; ++tdidx)
{
crypto::public_key L;
rct::scalarmultBase((rct::key&)L, rct::sk2rct(account_k[signer][n]));
if (used_L.find(L) != used_L.end())
k.push_back(rct::zero());
for (size_t n = 0; n < account_k[signer][tdidx].size(); ++n)
{
sc_add(k.back().bytes, k.back().bytes, rct::sk2rct(account_k[signer][n]).bytes);
crypto::public_key L;
rct::scalarmultBase((rct::key&)L, rct::sk2rct(account_k[signer][tdidx][n]));
if (used_L.find(L) != used_L.end())
{
sc_add(k.back().bytes, k.back().bytes, rct::sk2rct(account_k[signer][tdidx][n]).bytes);
}
}
CHECK_AND_ASSERT_MES(!(k.back() == rct::zero()), false, "failed to find k to sign transaction");
}
CHECK_AND_ASSERT_MES(!(k.back() == rct::zero()), false, "failed to find k to sign transaction");
tools::apply_permutation(ins_order, indices);
tools::apply_permutation(ins_order, k);
MDEBUG("signing with k size " << k.size());
MDEBUG("signing with k " << k.back());
@ -353,112 +398,126 @@ bool gen_multisig_tx_validation_base::generate_with(std::vector<test_event_entry
bool gen_multisig_tx_valid_22_1_2::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, true, 2, 2, 1, {2}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, true, 2, 2, 1, {2}, NULL, NULL);
}
bool gen_multisig_tx_valid_22_1_2_many_inputs::generate(std::vector<test_event_entry>& events) const
{
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, 4, mixin, amount_paid, true, 2, 2, 1, {2}, NULL, NULL);
}
bool gen_multisig_tx_valid_22_2_1::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, true, 2, 2, 2, {1}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, true, 2, 2, 2, {1}, NULL, NULL);
}
bool gen_multisig_tx_valid_33_1_23::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, true, 3, 3, 1, {2, 3}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, true, 3, 3, 1, {2, 3}, NULL, NULL);
}
bool gen_multisig_tx_valid_33_3_21::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, true, 3, 3, 3, {2, 1}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, true, 3, 3, 3, {2, 1}, NULL, NULL);
}
bool gen_multisig_tx_valid_23_1_2::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, true, 2, 3, 1, {2}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 1, {2}, NULL, NULL);
}
bool gen_multisig_tx_valid_23_1_3::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, true, 2, 3, 1, {3}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 1, {3}, NULL, NULL);
}
bool gen_multisig_tx_valid_23_2_1::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, true, 2, 3, 2, {1}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 2, {1}, NULL, NULL);
}
bool gen_multisig_tx_valid_23_2_3::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, true, 2, 3, 2, {3}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 2, {3}, NULL, NULL);
}
bool gen_multisig_tx_valid_45_1_234::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, 2, mixin, amount_paid, true, 4, 5, 1, {2, 3, 4}, NULL, NULL);
}
bool gen_multisig_tx_valid_45_4_135_many_inputs::generate(std::vector<test_event_entry>& events) const
{
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, true, 4, 5, 1, {2, 3, 4}, NULL, NULL);
return generate_with(events, 4, mixin, amount_paid, true, 4, 5, 4, {1, 3, 5}, NULL, NULL);
}
bool gen_multisig_tx_valid_89_3_1245789::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, true, 8, 9, 3, {1, 2, 4, 5, 7, 8, 9}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, true, 8, 9, 3, {1, 2, 4, 5, 7, 8, 9}, NULL, NULL);
}
bool gen_multisig_tx_invalid_22_1__no_threshold::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, false, 2, 2, 1, {}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, false, 2, 2, 1, {}, NULL, NULL);
}
bool gen_multisig_tx_invalid_33_1__no_threshold::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, false, 3, 3, 1, {}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {}, NULL, NULL);
}
bool gen_multisig_tx_invalid_33_1_2_no_threshold::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, false, 3, 3, 1, {2}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {2}, NULL, NULL);
}
bool gen_multisig_tx_invalid_33_1_3_no_threshold::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, false, 3, 3, 1, {3}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {3}, NULL, NULL);
}
bool gen_multisig_tx_invalid_23_1__no_threshold::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, false, 2, 3, 1, {}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, false, 2, 3, 1, {}, NULL, NULL);
}
bool gen_multisig_tx_invalid_45_5_23_no_threshold::generate(std::vector<test_event_entry>& events) const
{
const int mixin = 4;
const size_t mixin = 4;
const uint64_t amount_paid = 10000;
return generate_with(events, mixin, amount_paid, false, 4, 5, 5, {2, 3}, NULL, NULL);
return generate_with(events, 2, mixin, amount_paid, false, 4, 5, 5, {2, 3}, NULL, NULL);
}

@ -69,7 +69,7 @@ struct gen_multisig_tx_validation_base : public test_chain_unit_base
return true;
}
bool generate_with(std::vector<test_event_entry>& events, int mixin,
bool generate_with(std::vector<test_event_entry>& events, size_t inputs, size_t mixin,
uint64_t amount_paid, bool valid,
size_t threshold, size_t total, size_t creator, std::vector<size_t> signers,
const std::function<void(std::vector<cryptonote::tx_source_entry> &sources, std::vector<cryptonote::tx_destination_entry> &destinations)> &pre_tx,
@ -95,6 +95,12 @@ struct gen_multisig_tx_valid_22_1_2: public gen_multisig_tx_validation_base
};
template<> struct get_test_options<gen_multisig_tx_valid_22_1_2>: public get_test_options<gen_multisig_tx_validation_base> {};
struct gen_multisig_tx_valid_22_1_2_many_inputs: public gen_multisig_tx_validation_base
{
bool generate(std::vector<test_event_entry>& events) const;
};
template<> struct get_test_options<gen_multisig_tx_valid_22_1_2_many_inputs>: public get_test_options<gen_multisig_tx_validation_base> {};
struct gen_multisig_tx_valid_22_2_1: public gen_multisig_tx_validation_base
{
bool generate(std::vector<test_event_entry>& events) const;
@ -141,8 +147,14 @@ struct gen_multisig_tx_valid_45_1_234: public gen_multisig_tx_validation_base
{
bool generate(std::vector<test_event_entry>& events) const;
};
template<> struct get_test_options<gen_multisig_tx_valid_45_1_234>: public get_test_options<gen_multisig_tx_validation_base> {};
struct gen_multisig_tx_valid_45_4_135_many_inputs: public gen_multisig_tx_validation_base
{
bool generate(std::vector<test_event_entry>& events) const;
};
template<> struct get_test_options<gen_multisig_tx_valid_45_4_135_many_inputs>: public get_test_options<gen_multisig_tx_validation_base> {};
struct gen_multisig_tx_valid_89_3_1245789: public gen_multisig_tx_validation_base
{
bool generate(std::vector<test_event_entry>& events) const;

Loading…
Cancel
Save