You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
RandomX/src/instructionsPortable.cpp

230 lines
5.0 KiB

/*
Copyright (c) 2018 tevador
This file is part of RandomX.
RandomX is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RandomX is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RandomX. If not, see<http://www.gnu.org/licenses/>.
*/
//#define DEBUG
#include "intrinPortable.h"
#include "blake2/endian.h"
#pragma STDC FENV_ACCESS on
#include <cfenv>
#include <cmath>
#ifdef DEBUG
#include <iostream>
#endif
#include "common.hpp"
#if defined(__SIZEOF_INT128__)
typedef unsigned __int128 uint128_t;
typedef __int128 int128_t;
uint64_t mulh(uint64_t a, uint64_t b) {
return ((uint128_t)a * b) >> 64;
}
int64_t smulh(int64_t a, int64_t b) {
return ((int128_t)a * b) >> 64;
}
#define HAVE_MULH
#define HAVE_SMULH
#endif
#if defined(_MSC_VER)
#define HAS_VALUE(X) X ## 0
#define EVAL_DEFINE(X) HAS_VALUE(X)
#include <intrin.h>
#include <stdlib.h>
uint64_t rotl(uint64_t x, int c) {
return _rotl64(x, c);
}
uint64_t rotr(uint64_t x , int c) {
return _rotr64(x, c);
}
#define HAVE_ROTL
#define HAVE_ROTR
#if EVAL_DEFINE(__MACHINEARM64_X64(1))
uint64_t mulh(uint64_t a, uint64_t b) {
return __umulh(a, b);
}
#define HAVE_MULH
#endif
#if EVAL_DEFINE(__MACHINEX64(1))
int64_t smulh(int64_t a, int64_t b) {
int64_t hi;
_mul128(a, b, &hi);
return hi;
}
#define HAVE_SMULH
#endif
static void setRoundMode__(uint32_t mode) {
_controlfp(mode, _MCW_RC);
}
#define HAVE_SETROUNDMODE_IMPL
#endif
#ifndef HAVE_SETROUNDMODE_IMPL
static void setRoundMode__(uint32_t mode) {
fesetround(mode);
}
#endif
#ifndef HAVE_ROTR
uint64_t rotr(uint64_t a, int b) {
return (a >> b) | (a << (64 - b));
}
#define HAS_ROTR
#endif
#ifndef HAVE_ROTL
uint64_t rotl(uint64_t a, int b) {
return (a << b) | (a >> (64 - b));
}
#define HAS_ROTL
#endif
#ifndef HAVE_MULH
#define LO(x) ((x)&0xffffffff)
#define HI(x) ((x)>>32)
uint64_t mulh(uint64_t a, uint64_t b) {
uint64_t ah = HI(a), al = LO(a);
uint64_t bh = HI(b), bl = LO(b);
uint64_t x00 = al * bl;
uint64_t x01 = al * bh;
uint64_t x10 = ah * bl;
uint64_t x11 = ah * bh;
uint64_t m1 = LO(x10) + LO(x01) + HI(x00);
uint64_t m2 = HI(x10) + HI(x01) + LO(x11) + HI(m1);
uint64_t m3 = HI(x11) + HI(m2);
return (m3 << 32) + LO(m2);
}
#define HAVE_MULH
#endif
#ifndef HAVE_SMULH
int64_t smulh(int64_t a, int64_t b) {
int64_t hi = mulh(a, b);
if (a < 0LL) hi -= b;
if (b < 0LL) hi -= a;
return hi;
}
#define HAVE_SMULH
#endif
// avoid undefined behavior of signed overflow
static inline int32_t safeSub(int32_t a, int32_t b) {
return int32_t(uint32_t(a) - uint32_t(b));
}
#if __GNUC__ >= 5
#undef __has_builtin
#define __has_builtin(x) 1
#endif
#if defined(__has_builtin)
#if __has_builtin(__builtin_sub_overflow)
static inline bool subOverflow__(uint32_t a, uint32_t b) {
int32_t temp;
return __builtin_sub_overflow(unsigned32ToSigned2sCompl(a), unsigned32ToSigned2sCompl(b), &temp);
}
#define HAVE_SUB_OVERFLOW
#endif
#endif
#ifndef HAVE_SUB_OVERFLOW
static inline bool subOverflow__(uint32_t a, uint32_t b) {
auto c = unsigned32ToSigned2sCompl(a - b);
return (c < unsigned32ToSigned2sCompl(a)) != (unsigned32ToSigned2sCompl(b) > 0);
}
#define HAVE_SUB_OVERFLOW
#endif
static inline double FlushDenormalNaN(double x) {
int fpc = std::fpclassify(x);
if (fpc == FP_SUBNORMAL || fpc == FP_NAN) {
return 0.0;
}
return x;
}
static inline double FlushNaN(double x) {
return x != x ? 0.0 : x;
}
void setRoundMode(uint32_t rcflag) {
switch (rcflag & 3) {
case RoundDown:
setRoundMode__(FE_DOWNWARD);
break;
case RoundUp:
setRoundMode__(FE_UPWARD);
break;
case RoundToZero:
setRoundMode__(FE_TOWARDZERO);
break;
case RoundToNearest:
setRoundMode__(FE_TONEAREST);
break;
default:
UNREACHABLE;
}
}
bool condition(uint32_t type, uint32_t value, uint32_t imm32) {
switch (type & 7)
{
case 0:
return value <= imm32;
case 1:
return value > imm32;
case 2:
return unsigned32ToSigned2sCompl(value - imm32) < 0;
case 3:
return unsigned32ToSigned2sCompl(value - imm32) >= 0;
case 4:
return subOverflow__(value, imm32);
case 5:
return !subOverflow__(value, imm32);
case 6:
return unsigned32ToSigned2sCompl(value) < unsigned32ToSigned2sCompl(imm32);
case 7:
return unsigned32ToSigned2sCompl(value) >= unsigned32ToSigned2sCompl(imm32);
default:
UNREACHABLE;
}
}
void initFpu() {
#ifdef __SSE2__
_mm_setcsr(0x9FC0); //Flush to zero, denormals are zero, default rounding mode, all exceptions disabled
#else
setRoundMode(FE_TONEAREST);
#endif
}
union double_ser_t {
double f;
uint64_t i;
};
double loadDoublePortable(const void* addr) {
double_ser_t ds;
ds.i = load64(addr);
return ds.f;
}