You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
monero/src/device/device_default.cpp

425 lines
20 KiB

// Copyright (c) 2017-2020, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#include "device_default.hpp"
#include "int-util.h"
#include "crypto/wallet/crypto.h"
#include "cryptonote_basic/account.h"
#include "cryptonote_basic/subaddress_index.h"
#include "cryptonote_core/cryptonote_tx_utils.h"
#include "ringct/rctOps.h"
#include "cryptonote_config.h"
namespace hw {
namespace core {
device_default::device_default() { }
device_default::~device_default() { }
/* ===================================================================== */
/* === Misc ==== */
/* ===================================================================== */
static inline unsigned char *operator &(crypto::ec_scalar &scalar) {
return &reinterpret_cast<unsigned char &>(scalar);
}
static inline const unsigned char *operator &(const crypto::ec_scalar &scalar) {
return &reinterpret_cast<const unsigned char &>(scalar);
}
/* ======================================================================= */
/* SETUP/TEARDOWN */
/* ======================================================================= */
bool device_default::set_name(const std::string &name) {
this->name = name;
return true;
}
const std::string device_default::get_name() const {
return this->name;
}
bool device_default::init(void) {
return true;
}
bool device_default::release() {
return true;
}
bool device_default::connect(void) {
return true;
}
bool device_default::disconnect() {
return true;
}
bool device_default::set_mode(device_mode mode) {
return device::set_mode(mode);
}
/* ======================================================================= */
/* LOCKER */
/* ======================================================================= */
void device_default::lock() { }
bool device_default::try_lock() { return true; }
void device_default::unlock() { }
/* ======================================================================= */
/* WALLET & ADDRESS */
/* ======================================================================= */
bool device_default::generate_chacha_key(const cryptonote::account_keys &keys, crypto::chacha_key &key, uint64_t kdf_rounds) {
const crypto::secret_key &view_key = keys.m_view_secret_key;
const crypto::secret_key &spend_key = keys.m_spend_secret_key;
epee::mlocked<tools::scrubbed_arr<char, sizeof(view_key) + sizeof(spend_key) + 1>> data;
memcpy(data.data(), &view_key, sizeof(view_key));
memcpy(data.data() + sizeof(view_key), &spend_key, sizeof(spend_key));
data[sizeof(data) - 1] = config::HASH_KEY_WALLET;
crypto::generate_chacha_key(data.data(), sizeof(data), key, kdf_rounds);
return true;
}
bool device_default::get_public_address(cryptonote::account_public_address &pubkey) {
dfns();
}
bool device_default::get_secret_keys(crypto::secret_key &viewkey , crypto::secret_key &spendkey) {
dfns();
}
/* ======================================================================= */
/* SUB ADDRESS */
/* ======================================================================= */
bool device_default::derive_subaddress_public_key(const crypto::public_key &out_key, const crypto::key_derivation &derivation, const std::size_t output_index, crypto::public_key &derived_key) {
return crypto::wallet::derive_subaddress_public_key(out_key, derivation, output_index,derived_key);
}
crypto::public_key device_default::get_subaddress_spend_public_key(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) {
if (index.is_zero())
return keys.m_account_address.m_spend_public_key;
// m = Hs(a || index_major || index_minor)
crypto::secret_key m = get_subaddress_secret_key(keys.m_view_secret_key, index);
// M = m*G
crypto::public_key M;
crypto::secret_key_to_public_key(m, M);
// D = B + M
crypto::public_key D = rct::rct2pk(rct::addKeys(rct::pk2rct(keys.m_account_address.m_spend_public_key), rct::pk2rct(M)));
return D;
}
std::vector<crypto::public_key> device_default::get_subaddress_spend_public_keys(const cryptonote::account_keys &keys, uint32_t account, uint32_t begin, uint32_t end) {
CHECK_AND_ASSERT_THROW_MES(begin <= end, "begin > end");
std::vector<crypto::public_key> pkeys;
pkeys.reserve(end - begin);
cryptonote::subaddress_index index = {account, begin};
ge_p3 p3;
ge_cached cached;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&p3, (const unsigned char*)keys.m_account_address.m_spend_public_key.data) == 0,
"ge_frombytes_vartime failed to convert spend public key");
ge_p3_to_cached(&cached, &p3);
for (uint32_t idx = begin; idx < end; ++idx)
{
index.minor = idx;
if (index.is_zero())
{
pkeys.push_back(keys.m_account_address.m_spend_public_key);
continue;
}
crypto::secret_key m = get_subaddress_secret_key(keys.m_view_secret_key, index);
// M = m*G
ge_scalarmult_base(&p3, (const unsigned char*)m.data);
// D = B + M
crypto::public_key D;
ge_p1p1 p1p1;
ge_add(&p1p1, &p3, &cached);
ge_p1p1_to_p3(&p3, &p1p1);
ge_p3_tobytes((unsigned char*)D.data, &p3);
pkeys.push_back(D);
}
return pkeys;
}
cryptonote::account_public_address device_default::get_subaddress(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) {
if (index.is_zero())
return keys.m_account_address;
crypto::public_key D = get_subaddress_spend_public_key(keys, index);
// C = a*D
crypto::public_key C = rct::rct2pk(rct::scalarmultKey(rct::pk2rct(D), rct::sk2rct(keys.m_view_secret_key)));
// result: (C, D)
cryptonote::account_public_address address;
address.m_view_public_key = C;
address.m_spend_public_key = D;
return address;
}
crypto::secret_key device_default::get_subaddress_secret_key(const crypto::secret_key &a, const cryptonote::subaddress_index &index) {
char data[sizeof(config::HASH_KEY_SUBADDRESS) + sizeof(crypto::secret_key) + 2 * sizeof(uint32_t)];
memcpy(data, config::HASH_KEY_SUBADDRESS, sizeof(config::HASH_KEY_SUBADDRESS));
memcpy(data + sizeof(config::HASH_KEY_SUBADDRESS), &a, sizeof(crypto::secret_key));
uint32_t idx = SWAP32LE(index.major);
memcpy(data + sizeof(config::HASH_KEY_SUBADDRESS) + sizeof(crypto::secret_key), &idx, sizeof(uint32_t));
idx = SWAP32LE(index.minor);
memcpy(data + sizeof(config::HASH_KEY_SUBADDRESS) + sizeof(crypto::secret_key) + sizeof(uint32_t), &idx, sizeof(uint32_t));
crypto::secret_key m;
crypto::hash_to_scalar(data, sizeof(data), m);
return m;
}
/* ======================================================================= */
/* DERIVATION & KEY */
/* ======================================================================= */
bool device_default::verify_keys(const crypto::secret_key &secret_key, const crypto::public_key &public_key) {
crypto::public_key calculated_pub;
bool r = crypto::secret_key_to_public_key(secret_key, calculated_pub);
return r && public_key == calculated_pub;
}
bool device_default::scalarmultKey(rct::key & aP, const rct::key &P, const rct::key &a) {
rct::scalarmultKey(aP, P,a);
return true;
}
bool device_default::scalarmultBase(rct::key &aG, const rct::key &a) {
rct::scalarmultBase(aG,a);
return true;
}
bool device_default::sc_secret_add(crypto::secret_key &r, const crypto::secret_key &a, const crypto::secret_key &b) {
sc_add(&r, &a, &b);
return true;
}
crypto::secret_key device_default::generate_keys(crypto::public_key &pub, crypto::secret_key &sec, const crypto::secret_key& recovery_key, bool recover) {
return crypto::generate_keys(pub, sec, recovery_key, recover);
}
bool device_default::generate_key_derivation(const crypto::public_key &key1, const crypto::secret_key &key2, crypto::key_derivation &derivation) {
return crypto::wallet::generate_key_derivation(key1, key2, derivation);
}
bool device_default::derivation_to_scalar(const crypto::key_derivation &derivation, const size_t output_index, crypto::ec_scalar &res){
crypto::derivation_to_scalar(derivation,output_index, res);
return true;
}
bool device_default::derive_secret_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::secret_key &base, crypto::secret_key &derived_key){
crypto::derive_secret_key(derivation, output_index, base, derived_key);
return true;
}
bool device_default::derive_public_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::public_key &base, crypto::public_key &derived_key){
return crypto::derive_public_key(derivation, output_index, base, derived_key);
}
bool device_default::secret_key_to_public_key(const crypto::secret_key &sec, crypto::public_key &pub) {
return crypto::secret_key_to_public_key(sec,pub);
}
bool device_default::generate_key_image(const crypto::public_key &pub, const crypto::secret_key &sec, crypto::key_image &image){
crypto::generate_key_image(pub, sec,image);
return true;
}
bool device_default::conceal_derivation(crypto::key_derivation &derivation, const crypto::public_key &tx_pub_key, const std::vector<crypto::public_key> &additional_tx_pub_keys, const crypto::key_derivation &main_derivation, const std::vector<crypto::key_derivation> &additional_derivations){
return true;
}
/* ======================================================================= */
/* TRANSACTION */
/* ======================================================================= */
void device_default::generate_tx_proof(const crypto::hash &prefix_hash,
const crypto::public_key &R, const crypto::public_key &A, const boost::optional<crypto::public_key> &B, const crypto::public_key &D, const crypto::secret_key &r,
crypto::signature &sig) {
crypto::generate_tx_proof(prefix_hash, R, A, B, D, r, sig);
}
bool device_default::open_tx(crypto::secret_key &tx_key) {
cryptonote::keypair txkey = cryptonote::keypair::generate(*this);
tx_key = txkey.sec;
return true;
}
void device_default::get_transaction_prefix_hash(const cryptonote::transaction_prefix& tx, crypto::hash& h) {
cryptonote::get_transaction_prefix_hash(tx, h);
}
bool device_default::generate_output_ephemeral_keys(const size_t tx_version,
const cryptonote::account_keys &sender_account_keys, const crypto::public_key &txkey_pub, const crypto::secret_key &tx_key,
const cryptonote::tx_destination_entry &dst_entr, const boost::optional<cryptonote::account_public_address> &change_addr, const size_t output_index,
const bool &need_additional_txkeys, const std::vector<crypto::secret_key> &additional_tx_keys,
std::vector<crypto::public_key> &additional_tx_public_keys,
std::vector<rct::key> &amount_keys, crypto::public_key &out_eph_public_key) {
crypto::key_derivation derivation;
// make additional tx pubkey if necessary
cryptonote::keypair additional_txkey;
if (need_additional_txkeys)
{
additional_txkey.sec = additional_tx_keys[output_index];
if (dst_entr.is_subaddress)
additional_txkey.pub = rct::rct2pk(rct::scalarmultKey(rct::pk2rct(dst_entr.addr.m_spend_public_key), rct::sk2rct(additional_txkey.sec)));
else
additional_txkey.pub = rct::rct2pk(rct::scalarmultBase(rct::sk2rct(additional_txkey.sec)));
}
bool r;
if (change_addr && dst_entr.addr == *change_addr)
{
// sending change to yourself; derivation = a*R
r = generate_key_derivation(txkey_pub, sender_account_keys.m_view_secret_key, derivation);
CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << txkey_pub << ", " << sender_account_keys.m_view_secret_key << ")");
}
else
{
// sending to the recipient; derivation = r*A (or s*C in the subaddress scheme)
r = generate_key_derivation(dst_entr.addr.m_view_public_key, dst_entr.is_subaddress && need_additional_txkeys ? additional_txkey.sec : tx_key, derivation);
CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << dst_entr.addr.m_view_public_key << ", " << (dst_entr.is_subaddress && need_additional_txkeys ? additional_txkey.sec : tx_key) << ")");
}
if (need_additional_txkeys)
{
additional_tx_public_keys.push_back(additional_txkey.pub);
}
if (tx_version > 1)
{
crypto::secret_key scalar1;
derivation_to_scalar(derivation, output_index, scalar1);
amount_keys.push_back(rct::sk2rct(scalar1));
}
r = derive_public_key(derivation, output_index, dst_entr.addr.m_spend_public_key, out_eph_public_key);
CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to derive_public_key(" << derivation << ", " << output_index << ", "<< dst_entr.addr.m_spend_public_key << ")");
return r;
}
bool device_default::encrypt_payment_id(crypto::hash8 &payment_id, const crypto::public_key &public_key, const crypto::secret_key &secret_key) {
crypto::key_derivation derivation;
crypto::hash hash;
char data[33]; /* A hash, and an extra byte */
if (!generate_key_derivation(public_key, secret_key, derivation))
return false;
memcpy(data, &derivation, 32);
data[32] = config::HASH_KEY_ENCRYPTED_PAYMENT_ID;
cn_fast_hash(data, 33, hash);
for (size_t b = 0; b < 8; ++b)
payment_id.data[b] ^= hash.data[b];
return true;
}
rct::key device_default::genCommitmentMask(const rct::key &amount_key) {
return rct::genCommitmentMask(amount_key);
}
bool device_default::ecdhEncode(rct::ecdhTuple & unmasked, const rct::key & sharedSec, bool short_amount) {
rct::ecdhEncode(unmasked, sharedSec, short_amount);
return true;
}
bool device_default::ecdhDecode(rct::ecdhTuple & masked, const rct::key & sharedSec, bool short_amount) {
rct::ecdhDecode(masked, sharedSec, short_amount);
return true;
}
bool device_default::mlsag_prepare(const rct::key &H, const rct::key &xx,
rct::key &a, rct::key &aG, rct::key &aHP, rct::key &II) {
rct::skpkGen(a, aG);
rct::scalarmultKey(aHP, H, a);
rct::scalarmultKey(II, H, xx);
return true;
}
bool device_default::mlsag_prepare(rct::key &a, rct::key &aG) {
rct::skpkGen(a, aG);
return true;
}
bool device_default::mlsag_prehash(const std::string &blob, size_t inputs_size, size_t outputs_size, const rct::keyV &hashes, const rct::ctkeyV &outPk, rct::key &prehash) {
prehash = rct::cn_fast_hash(hashes);
return true;
}
bool device_default::mlsag_hash(const rct::keyV &toHash, rct::key &c_old) {
c_old = rct::hash_to_scalar(toHash);
return true;
}
bool device_default::mlsag_sign(const rct::key &c, const rct::keyV &xx, const rct::keyV &alpha, const size_t rows, const size_t dsRows, rct::keyV &ss ) {
CHECK_AND_ASSERT_THROW_MES(dsRows<=rows, "dsRows greater than rows");
CHECK_AND_ASSERT_THROW_MES(xx.size() == rows, "xx size does not match rows");
CHECK_AND_ASSERT_THROW_MES(alpha.size() == rows, "alpha size does not match rows");
CHECK_AND_ASSERT_THROW_MES(ss.size() == rows, "ss size does not match rows");
for (size_t j = 0; j < rows; j++) {
sc_mulsub(ss[j].bytes, c.bytes, xx[j].bytes, alpha[j].bytes);
}
return true;
}
bool device_default::close_tx() {
return true;
}
/* ---------------------------------------------------------- */
static device_default *default_core_device = NULL;
void register_all(std::map<std::string, std::unique_ptr<device>> &registry) {
if (!default_core_device) {
default_core_device = new device_default();
default_core_device->set_name("default_core_device");
}
registry.insert(std::make_pair("default", std::unique_ptr<device>(default_core_device)));
}
}
}