You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
p2wool/src/p2p_server.cpp

2377 lines
67 KiB

/*
* This file is part of the Monero P2Pool <https://github.com/SChernykh/p2pool>
* Copyright (c) 2021-2023 SChernykh <https://github.com/SChernykh>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "p2p_server.h"
#include "p2pool.h"
#include "params.h"
#include "keccak.h"
#include "side_chain.h"
#include "pool_block.h"
#include "block_cache.h"
#include "json_rpc_request.h"
#include "json_parsers.h"
#include "block_template.h"
#include <rapidjson/document.h>
#include <fstream>
#include <numeric>
static constexpr char log_category_prefix[] = "P2PServer ";
static constexpr char saved_peer_list_file_name[] = "p2pool_peers.txt";
static const char* seed_nodes[] = { "seeds.p2pool.io", ""};
static const char* seed_nodes_mini[] = { "seeds-mini.p2pool.io", "" };
static constexpr int DEFAULT_BACKLOG = 16;
static constexpr uint64_t DEFAULT_BAN_TIME = 600;
static constexpr size_t SEND_BUF_MIN_SIZE = 256;
#include "tcp_server.inl"
namespace p2pool {
P2PServer::P2PServer(p2pool* pool)
: TCPServer(P2PClient::allocate)
, m_pool(pool)
, m_cache(pool->params().m_blockCache ? new BlockCache() : nullptr)
, m_cacheLoaded(false)
, m_initialPeerList(pool->params().m_p2pPeerList)
, m_cachedBlocks(nullptr)
, m_rng(RandomDeviceSeed::instance)
, m_block(new PoolBlock())
, m_blockDeserializeResult(0)
, m_timer{}
, m_timerCounter(0)
, m_timerInterval(2)
, m_peerListLastSaved(0)
, m_lookForMissingBlocks(true)
, m_fastestPeer(nullptr)
{
m_blockDeserializeBuf.reserve(131072);
// Diffuse the initial state in case it has low quality
m_rng.discard(10000);
m_peerId = m_rng();
const Params& params = pool->params();
if (!params.m_socks5Proxy.empty()) {
parse_address_list(params.m_socks5Proxy,
[this](bool is_v6, const std::string& /*address*/, const std::string& ip, int port)
{
if (!str_to_ip(is_v6, ip.c_str(), m_socks5ProxyIP)) {
PANIC_STOP();
}
m_socks5ProxyV6 = is_v6;
m_socks5ProxyPort = port;
});
m_socks5Proxy = params.m_socks5Proxy;
}
set_max_outgoing_peers(params.m_maxOutgoingPeers);
set_max_incoming_peers(params.m_maxIncomingPeers);
uv_mutex_init_checked(&m_blockLock);
uv_mutex_init_checked(&m_peerListLock);
uv_mutex_init_checked(&m_broadcastLock);
uv_rwlock_init_checked(&m_cachedBlocksLock);
uv_mutex_init_checked(&m_connectToPeersLock);
int err = uv_async_init(&m_loop, &m_broadcastAsync, on_broadcast);
if (err) {
LOGERR(1, "uv_async_init failed, error " << uv_err_name(err));
PANIC_STOP();
}
m_broadcastAsync.data = this;
m_broadcastQueue.reserve(2);
err = uv_async_init(&m_loop, &m_connectToPeersAsync, on_connect_to_peers);
if (err) {
LOGERR(1, "uv_async_init failed, error " << uv_err_name(err));
PANIC_STOP();
}
m_connectToPeersAsync.data = this;
err = uv_async_init(&m_loop, &m_showPeersAsync, on_show_peers);
if (err) {
LOGERR(1, "uv_async_init failed, error " << uv_err_name(err));
PANIC_STOP();
}
m_showPeersAsync.data = this;
err = uv_timer_init(&m_loop, &m_timer);
if (err) {
LOGERR(1, "failed to create timer, error " << uv_err_name(err));
PANIC_STOP();
}
if (m_cache) {
WriteLock lock(m_cachedBlocksLock);
m_cache->load_all(m_pool->side_chain(), *this);
m_cacheLoaded = true;
}
m_timer.data = this;
err = uv_timer_start(&m_timer, on_timer, 1000, m_timerInterval * 1000);
if (err) {
LOGERR(1, "failed to start timer, error " << uv_err_name(err));
PANIC_STOP();
}
load_peer_list();
start_listening(params.m_p2pAddresses);
}
P2PServer::~P2PServer()
{
shutdown_tcp();
uv_mutex_destroy(&m_blockLock);
uv_mutex_destroy(&m_peerListLock);
uv_mutex_destroy(&m_broadcastLock);
clear_cached_blocks();
uv_rwlock_destroy(&m_cachedBlocksLock);
uv_mutex_destroy(&m_connectToPeersLock);
delete m_block;
delete m_cache;
for (const Broadcast* data : m_broadcastQueue) {
delete data;
}
}
void P2PServer::add_cached_block(const PoolBlock& block)
{
if (m_cacheLoaded) {
LOGERR(1, "add_cached_block can only be called on startup. Fix the code!");
return;
}
if (!m_cachedBlocks) {
m_cachedBlocks = new unordered_map<hash, PoolBlock*>();
}
if (m_cachedBlocks->find(block.m_sidechainId) == m_cachedBlocks->end()) {
PoolBlock* new_block = new PoolBlock(block);
m_cachedBlocks->insert({ new_block->m_sidechainId, new_block });
}
}
void P2PServer::clear_cached_blocks()
{
if (!m_cachedBlocks) {
return;
}
WriteLock lock(m_cachedBlocksLock);
// cppcheck-suppress identicalConditionAfterEarlyExit
if (!m_cachedBlocks) {
return;
}
for (auto it : *m_cachedBlocks) {
delete it.second;
}
delete m_cachedBlocks;
m_cachedBlocks = nullptr;
}
void P2PServer::store_in_cache(const PoolBlock& block)
{
if (m_cache && block.m_verified && !block.m_invalid) {
m_cache->store(block);
}
}
void P2PServer::connect_to_peers_async(const char* peer_list)
{
{
MutexLock lock(m_connectToPeersLock);
if (!m_connectToPeersData.empty()) {
m_connectToPeersData.append(1, ',');
}
m_connectToPeersData.append(peer_list);
}
if (!uv_is_closing(reinterpret_cast<uv_handle_t*>(&m_connectToPeersAsync))) {
uv_async_send(&m_connectToPeersAsync);
}
}
void P2PServer::on_connect_to_peers(uv_async_t* handle)
{
P2PServer* server = reinterpret_cast<P2PServer*>(handle->data);
std::string peer_list;
{
MutexLock lock(server->m_connectToPeersLock);
peer_list = std::move(server->m_connectToPeersData);
}
if (!peer_list.empty()) {
server->connect_to_peers(peer_list);
}
}
void P2PServer::connect_to_peers(const std::string& peer_list)
{
parse_address_list(peer_list,
[this](bool is_v6, const std::string& /*address*/, std::string ip, int port)
{
if (!m_pool->params().m_dns || resolve_host(ip, is_v6)) {
connect_to_peer(is_v6, ip.c_str(), port);
}
});
}
void P2PServer::on_connect_failed(bool is_v6, const raw_ip& ip, int port)
{
MutexLock lock(m_peerListLock);
for (auto it = m_peerList.begin(); it != m_peerList.end(); ++it) {
if ((it->m_isV6 == is_v6) && (it->m_port == port) && (it->m_addr == ip)) {
++it->m_numFailedConnections;
if (it->m_numFailedConnections >= 10) {
m_peerList.erase(it);
}
return;
}
}
}
void P2PServer::update_peer_connections()
{
const uint64_t cur_time = seconds_since_epoch();
const uint64_t last_updated = m_pool->side_chain().last_updated();
bool has_good_peers = false;
m_fastestPeer = nullptr;
unordered_set<raw_ip> connected_clients;
{
MutexLock lock(m_clientsListLock);
connected_clients.reserve(m_numConnections);
for (P2PClient* client = static_cast<P2PClient*>(m_connectedClientsList->m_next); client != m_connectedClientsList; client = static_cast<P2PClient*>(client->m_next)) {
const int timeout = client->m_handshakeComplete ? 300 : 10;
if ((cur_time >= client->m_lastAlive + timeout) && (client->m_socks5ProxyState == Client::Socks5ProxyState::Default)) {
const uint64_t idle_time = static_cast<uint64_t>(cur_time - client->m_lastAlive);
LOGWARN(5, "peer " << static_cast<char*>(client->m_addrString) << " has been idle for " << idle_time << " seconds, disconnecting");
client->close();
continue;
}
if (client->m_handshakeComplete && client->m_lastBroadcastTimestamp) {
// - Side chain is at least 15 minutes newer (last_updated >= client->m_lastBroadcastTimestamp + 900)
// - It's been at least 10 seconds since side chain updated (cur_time >= last_updated + 10)
// - It's been at least 10 seconds since the last block request (peer is not syncing)
// - Peer should have sent a broadcast by now
if (last_updated && (cur_time >= std::max(last_updated, client->m_lastBlockrequestTimestamp) + 10) && (last_updated >= client->m_lastBroadcastTimestamp + 900)) {
const uint64_t dt = last_updated - client->m_lastBroadcastTimestamp;
LOGWARN(5, "peer " << static_cast<char*>(client->m_addrString) << " is not broadcasting blocks (last update " << dt << " seconds ago)");
client->ban(DEFAULT_BAN_TIME);
remove_peer_from_list(client);
client->close();
continue;
}
}
connected_clients.insert(client->m_addr);
if (client->is_good()) {
has_good_peers = true;
if ((client->m_pingTime >= 0) && (!m_fastestPeer || (m_fastestPeer->m_pingTime > client->m_pingTime))) {
m_fastestPeer = client;
}
}
}
}
std::vector<Peer> peer_list;
{
MutexLock lock(m_peerListLock);
if ((m_timerCounter % 30) == 1) {
// Update last seen time for currently connected peers
for (Peer& p : m_peerList) {
if (connected_clients.find(p.m_addr) != connected_clients.end()) {
p.m_lastSeen = cur_time;
}
}
// Remove all peers that weren't seen for more than 1 hour
m_peerList.erase(std::remove_if(m_peerList.begin(), m_peerList.end(), [cur_time](const Peer& p) { return p.m_lastSeen + 3600 < cur_time; }), m_peerList.end());
}
peer_list = m_peerList;
}
uint32_t N = m_maxOutgoingPeers;
// Special case: when we can't find p2pool peers, scan through monerod peers (try 25 peers at a time)
if (!has_good_peers && !m_peerListMonero.empty()) {
LOGINFO(3, "Scanning monerod peers, " << m_peerListMonero.size() << " left");
for (uint32_t i = 0; (i < 25) && !m_peerListMonero.empty(); ++i) {
peer_list.push_back(m_peerListMonero.back());
m_peerListMonero.pop_back();
}
N = static_cast<uint32_t>(peer_list.size());
}
// Try to have at least N outgoing connections (N defaults to 10, can be set via --out-peers command line parameter)
for (uint32_t i = m_numConnections - m_numIncomingConnections; (i < N) && !peer_list.empty();) {
const uint64_t k = get_random64() % peer_list.size();
const Peer& peer = peer_list[k];
if ((connected_clients.find(peer.m_addr) == connected_clients.end()) && connect_to_peer(peer.m_isV6, peer.m_addr, peer.m_port)) {
++i;
}
if (k + 1 < peer_list.size()) {
peer_list[k] = peer_list.back();
}
peer_list.pop_back();
}
if (!has_good_peers && ((m_timerCounter % 10) == 0)) {
LOGERR(1, "no connections to other p2pool nodes, check your monerod/p2pool/network/firewall setup!!!");
load_peer_list();
if (m_peerListMonero.empty()) {
load_monerod_peer_list();
}
}
}
void P2PServer::update_peer_list()
{
MutexLock lock(m_clientsListLock);
const uint64_t cur_time = seconds_since_epoch();
for (P2PClient* client = static_cast<P2PClient*>(m_connectedClientsList->m_next); client != m_connectedClientsList; client = static_cast<P2PClient*>(client->m_next)) {
if (client->is_good() && (cur_time >= client->m_nextOutgoingPeerListRequest)) {
send_peer_list_request(client, cur_time);
}
}
}
void P2PServer::send_peer_list_request(P2PClient* client, uint64_t cur_time)
{
// Send peer list requests at random intervals (60-120 seconds)
client->m_nextOutgoingPeerListRequest = cur_time + (60 + (get_random64() % 61));
const bool result = send(client,
[client](void* buf, size_t buf_size)
{
LOGINFO(6, "sending PEER_LIST_REQUEST to " << static_cast<char*>(client->m_addrString));
if (buf_size < SEND_BUF_MIN_SIZE) {
return 0;
}
*reinterpret_cast<uint8_t*>(buf) = static_cast<uint8_t>(MessageId::PEER_LIST_REQUEST);
return 1;
});
if (result) {
client->m_lastPeerListRequestTime = std::chrono::high_resolution_clock::now();
++client->m_peerListPendingRequests;
}
}
void P2PServer::save_peer_list_async()
{
const uint64_t cur_time = seconds_since_epoch();
if (cur_time < m_peerListLastSaved + 300) {
return;
}
struct Work
{
uv_work_t req;
P2PServer* server;
};
Work* work = new Work{};
work->req.data = work;
work->server = this;
const int err = uv_queue_work(&m_loop, &work->req,
[](uv_work_t* req)
{
BACKGROUND_JOB_START(P2PServer::save_peer_list_async);
reinterpret_cast<Work*>(req->data)->server->save_peer_list();
},
[](uv_work_t* req, int /*status*/)
{
delete reinterpret_cast<Work*>(req->data);
BACKGROUND_JOB_STOP(P2PServer::save_peer_list_async);
});
if (err) {
LOGERR(1, "save_peer_list_async: uv_queue_work failed, error " << uv_err_name(err));
delete work;
}
}
void P2PServer::save_peer_list()
{
std::ofstream f(saved_peer_list_file_name, std::ios::binary);
if (!f.is_open()) {
LOGERR(1, "failed to save peer list");
return;
}
std::vector<Peer> peer_list;
{
MutexLock lock(m_peerListLock);
peer_list = m_peerList;
}
for (const Peer& p : peer_list) {
const char* addr_str;
char addr_str_buf[64];
if (p.m_isV6) {
in6_addr addr{};
memcpy(addr.s6_addr, p.m_addr.data, sizeof(addr.s6_addr));
addr_str = inet_ntop(AF_INET6, &addr, addr_str_buf, sizeof(addr_str_buf));
if (addr_str) {
f << '[' << addr_str << "]:" << p.m_port << '\n';
}
}
else {
in_addr addr{};
memcpy(&addr.s_addr, p.m_addr.data + 12, sizeof(addr.s_addr));
addr_str = inet_ntop(AF_INET, &addr, addr_str_buf, sizeof(addr_str_buf));
if (addr_str) {
f << addr_str << ':' << p.m_port << '\n';
}
}
}
f.flush();
f.close();
LOGINFO(5, "peer list saved (" << peer_list.size() << " peers)");
m_peerListLastSaved = seconds_since_epoch();
}
void P2PServer::load_peer_list()
{
size_t old_size;
{
MutexLock lock(m_peerListLock);
old_size = m_peerList.size();
}
std::string saved_list;
// Load peers from seed nodes if we're on the default or mini sidechain
auto load_from_seed_nodes = [&saved_list](const char** nodes, int p2p_port) {
for (size_t i = 0; nodes[i][0]; ++i) {
LOGINFO(4, "loading peers from " << nodes[i]);
addrinfo hints{};
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_ADDRCONFIG;
addrinfo* result;
const int err = getaddrinfo(nodes[i], nullptr, &hints, &result);
if (err == 0) {
for (addrinfo* r = result; r != NULL; r = r->ai_next) {
const char* addr_str;
char addr_str_buf[64];
char buf[128];
buf[0] = '\0';
log::Stream s(buf);
if (r->ai_family == AF_INET6) {
addr_str = inet_ntop(AF_INET6, &reinterpret_cast<sockaddr_in6*>(r->ai_addr)->sin6_addr, addr_str_buf, sizeof(addr_str_buf));
if (addr_str) {
s << '[' << addr_str << "]:" << p2p_port << '\0';
}
}
else {
addr_str = inet_ntop(AF_INET, &reinterpret_cast<sockaddr_in*>(r->ai_addr)->sin_addr, addr_str_buf, sizeof(addr_str_buf));
if (addr_str) {
s << addr_str << ':' << p2p_port << '\0';
}
}
if (s.m_pos) {
LOGINFO(4, "added " << static_cast<const char*>(buf) << " from " << nodes[i]);
if (!saved_list.empty()) {
saved_list += ',';
}
saved_list += buf;
}
}
freeaddrinfo(result);
}
else {
LOGWARN(3, "getaddrinfo failed for " << nodes[i] << ": " << gai_strerror(err));
}
}
};
if (m_pool->params().m_dns) {
if (m_pool->side_chain().is_default()) {
load_from_seed_nodes(seed_nodes, DEFAULT_P2P_PORT);
}
else if (m_pool->side_chain().is_mini()) {
load_from_seed_nodes(seed_nodes_mini, DEFAULT_P2P_PORT_MINI);
}
}
// Finally load peers from p2pool_peers.txt
std::ifstream f(saved_peer_list_file_name);
if (f.is_open()) {
std::string address;
while (f.good()) {
std::getline(f, address);
if (!address.empty()) {
if (!saved_list.empty()) {
saved_list += ',';
}
saved_list += address;
}
}
f.close();
}
if (saved_list.empty()) {
return;
}
MutexLock lock(m_peerListLock);
parse_address_list(saved_list,
[this](bool is_v6, const std::string& /*address*/, const std::string& ip, int port)
{
Peer p;
if (!str_to_ip(is_v6, ip.c_str(), p.m_addr)) {
return;
}
p.m_isV6 = is_v6;
bool already_added = false;
for (const Peer& peer : m_peerList) {
if ((peer.m_isV6 == p.m_isV6) && (peer.m_addr == p.m_addr)) {
already_added = true;
break;
}
}
p.m_port = port;
p.m_numFailedConnections = 0;
p.m_lastSeen = seconds_since_epoch();
if (!already_added && !is_banned(p.m_addr)) {
m_peerList.push_back(p);
}
});
LOGINFO(4, "peer list loaded (" << (m_peerList.size() - old_size) << " peers)");
}
void P2PServer::load_monerod_peer_list()
{
const Params& params = m_pool->params();
JSONRPCRequest::call(params.m_host, params.m_rpcPort, "/get_peer_list", params.m_rpcLogin, m_socks5Proxy,
[this](const char* data, size_t size)
{
#define ERR_STR "/get_peer_list RPC request returned invalid JSON "
using namespace rapidjson;
Document doc;
if (doc.Parse(data, size).HasParseError()) {
LOGWARN(4, ERR_STR "(parse error)");
return;
}
if (!doc.IsObject()) {
LOGWARN(4, ERR_STR "(not an object)");
return;
}
if (!doc.HasMember("white_list")) {
LOGWARN(4, ERR_STR "('white_list' not found)");
return;
}
const auto& white_list = doc["white_list"];
if (!white_list.IsArray()) {
LOGWARN(4, ERR_STR "('white_list' is not an array)");
return;
}
#undef ERR_STR
const int port = m_pool->side_chain().is_mini() ? DEFAULT_P2P_PORT_MINI : DEFAULT_P2P_PORT;
const SizeType n = white_list.Size();
m_peerListMonero.clear();
m_peerListMonero.reserve(n);
for (SizeType i = 0; i < n; ++i) {
auto& v = white_list[i];
const char* ip;
uint64_t last_seen;
if (!parseValue(v, "host", ip) || !parseValue(v, "last_seen", last_seen)) {
continue;
}
Peer p;
p.m_lastSeen = last_seen;
p.m_isV6 = (strchr(ip, ':') != 0);
if (!str_to_ip(p.m_isV6, ip, p.m_addr)) {
continue;
}
p.m_port = port;
p.m_numFailedConnections = 0;
if (!is_banned(p.m_addr)) {
m_peerListMonero.push_back(p);
}
}
// Put recently active peers last in the list (it will be scanned backwards)
std::sort(m_peerListMonero.begin(), m_peerListMonero.end(), [](const Peer& a, const Peer& b) { return a.m_lastSeen < b.m_lastSeen; });
LOGINFO(4, "monerod peer list loaded (" << m_peerListMonero.size() << " peers)");
},
[](const char* data, size_t size)
{
if (size > 0) {
LOGWARN(4, "/get_peer_list RPC request failed: error " << log::const_buf(data, size));
}
}, &m_loop);
}
void P2PServer::update_peer_in_list(bool is_v6, const raw_ip& ip, int port)
{
const uint64_t cur_time = seconds_since_epoch();
MutexLock lock(m_peerListLock);
for (Peer& p : m_peerList) {
if ((p.m_isV6 == is_v6) && (p.m_addr == ip)) {
p.m_port = port;
p.m_numFailedConnections = 0;
p.m_lastSeen = cur_time;
return;
}
}
if (!is_banned(ip)) {
m_peerList.emplace_back(Peer{ is_v6, ip, port, 0, cur_time });
}
}
void P2PServer::remove_peer_from_list(P2PClient* client)
{
MutexLock lock(m_peerListLock);
for (auto it = m_peerList.begin(); it != m_peerList.end(); ++it) {
const Peer& p = *it;
if ((p.m_isV6 == client->m_isV6) && (p.m_port == client->m_listenPort) && (p.m_addr == client->m_addr)) {
m_peerList.erase(it);
return;
}
}
}
void P2PServer::remove_peer_from_list(const raw_ip& ip)
{
MutexLock lock(m_peerListLock);
for (auto it = m_peerList.begin(); it != m_peerList.end(); ++it) {
const Peer& p = *it;
if (p.m_addr == ip) {
m_peerList.erase(it);
return;
}
}
}
void P2PServer::broadcast(const PoolBlock& block, const PoolBlock* parent)
{
MinerData miner_data = m_pool->miner_data();
if (block.m_txinGenHeight + 2 < miner_data.height) {
LOGWARN(3, "Trying to broadcast a stale block " << block.m_sidechainId << " (mainchain height " << block.m_txinGenHeight << ", current height is " << miner_data.height << ')');
return;
}
if (block.m_txinGenHeight > miner_data.height + 2) {
LOGWARN(3, "Trying to broadcast a block " << block.m_sidechainId << " ahead on mainchain (mainchain height " << block.m_txinGenHeight << ", current height is " << miner_data.height << ')');
return;
}
Broadcast* data = new Broadcast();
int outputs_offset, outputs_blob_size;
const std::vector<uint8_t> mainchain_data = block.serialize_mainchain_data(nullptr, nullptr, &outputs_offset, &outputs_blob_size);
const std::vector<uint8_t> sidechain_data = block.serialize_sidechain_data();
data->blob.reserve(mainchain_data.size() + sidechain_data.size());
data->blob = mainchain_data;
data->blob.insert(data->blob.end(), sidechain_data.begin(), sidechain_data.end());
data->pruned_blob.reserve(mainchain_data.size() + sidechain_data.size() + 16 - outputs_blob_size);
data->pruned_blob.assign(mainchain_data.begin(), mainchain_data.begin() + outputs_offset);
// 0 outputs in the pruned blob
data->pruned_blob.push_back(0);
const uint64_t total_reward = std::accumulate(block.m_outputs.begin(), block.m_outputs.end(), 0ULL,
[](uint64_t a, const PoolBlock::TxOutput& b)
{
return a + b.m_reward;
});
writeVarint(total_reward, data->pruned_blob);
writeVarint(outputs_blob_size, data->pruned_blob);
data->pruned_blob.insert(data->pruned_blob.end(), mainchain_data.begin() + outputs_offset + outputs_blob_size, mainchain_data.end());
const size_t N = block.m_transactions.size();
if ((N > 1) && parent && (parent->m_transactions.size() > 1)) {
unordered_map<hash, size_t> parent_transactions;
parent_transactions.reserve(parent->m_transactions.size());
for (size_t i = 1; i < parent->m_transactions.size(); ++i) {
parent_transactions.emplace(parent->m_transactions[i], i);
}
// Reserve 1 additional byte per transaction to be ready for the worst case (all transactions are different in the parent block)
data->compact_blob.reserve(data->pruned_blob.capacity() + (N - 1));
// Copy pruned_blob without the transaction list
data->compact_blob.assign(data->pruned_blob.begin(), data->pruned_blob.end() - (N - 1) * HASH_SIZE);
// Process transaction hashes one by one
size_t num_found = 0;
for (size_t i = 1; i < N; ++i) {
const hash& tx = block.m_transactions[i];
auto it = parent_transactions.find(tx);
if (it != parent_transactions.end()) {
writeVarint(it->second, data->compact_blob);
++num_found;
}
else {
data->compact_blob.push_back(0);
data->compact_blob.insert(data->compact_blob.end(), tx.h, tx.h + HASH_SIZE);
}
}
LOGINFO(6, "compact blob: " << num_found << '/' << (N - 1) << " transactions were found in the parent block");
data->compact_blob.insert(data->compact_blob.end(), sidechain_data.begin(), sidechain_data.end());
}
data->pruned_blob.insert(data->pruned_blob.end(), sidechain_data.begin(), sidechain_data.end());
data->ancestor_hashes.reserve(block.m_uncles.size() + 1);
data->ancestor_hashes = block.m_uncles;
data->ancestor_hashes.push_back(block.m_parent);
LOGINFO(5, "Broadcasting block " << block.m_sidechainId << " (height " << block.m_sidechainHeight << "): " << data->compact_blob.size() << '/' << data->pruned_blob.size() << '/' << data->blob.size() << " bytes (compact/pruned/full)");
{
MutexLock lock(m_broadcastLock);
m_broadcastQueue.push_back(data);
}
if (uv_is_closing(reinterpret_cast<uv_handle_t*>(&m_broadcastAsync))) {
return;
}
const int err = uv_async_send(&m_broadcastAsync);
if (err) {
LOGERR(1, "uv_async_send failed, error " << uv_err_name(err));
bool found = false;
{
MutexLock lock(m_broadcastLock);
auto it = std::find(m_broadcastQueue.begin(), m_broadcastQueue.end(), data);
if (it != m_broadcastQueue.end()) {
found = true;
m_broadcastQueue.erase(it);
}
}
if (found) {
delete data;
}
}
}
void P2PServer::on_broadcast()
{
std::vector<Broadcast*> broadcast_queue;
broadcast_queue.reserve(2);
{
MutexLock lock(m_broadcastLock);
broadcast_queue = m_broadcastQueue;
m_broadcastQueue.clear();
}
if (broadcast_queue.empty()) {
return;
}
ON_SCOPE_LEAVE([&broadcast_queue]()
{
for (const Broadcast* data : broadcast_queue) {
delete data;
}
});
MutexLock lock(m_clientsListLock);
for (P2PClient* client = static_cast<P2PClient*>(m_connectedClientsList->m_next); client != m_connectedClientsList; client = static_cast<P2PClient*>(client->m_next)) {
if (!client->is_good()) {
continue;
}
for (Broadcast* data : broadcast_queue) {
send(client, [client, data](void* buf, size_t buf_size) -> size_t
{
uint8_t* p0 = reinterpret_cast<uint8_t*>(buf);
uint8_t* p = p0;
bool send_pruned = true;
bool send_compact = (client->m_protocolVersion >= PROTOCOL_VERSION_1_1) && !data->compact_blob.empty() && (data->compact_blob.size() < data->pruned_blob.size());
const hash* a = client->m_broadcastedHashes;
const hash* b = client->m_broadcastedHashes + array_size(&P2PClient::m_broadcastedHashes);
for (const hash& id : data->ancestor_hashes) {
if (std::find(a, b, id) == b) {
send_pruned = false;
send_compact = false;
break;
}
}
if (send_pruned) {
LOGINFO(6, "sending BLOCK_BROADCAST (" << (send_compact ? "compact" : "pruned") << ") to " << log::Gray() << static_cast<char*>(client->m_addrString));
const std::vector<uint8_t>& blob = send_compact ? data->compact_blob : data->pruned_blob;
const uint32_t len = static_cast<uint32_t>(blob.size());
if (buf_size < SEND_BUF_MIN_SIZE + 1 + sizeof(uint32_t) + len) {
return 0;
}
*(p++) = static_cast<uint8_t>(send_compact ? MessageId::BLOCK_BROADCAST_COMPACT : MessageId::BLOCK_BROADCAST);
memcpy(p, &len, sizeof(uint32_t));
p += sizeof(uint32_t);
if (len) {
memcpy(p, blob.data(), len);
p += len;
}
}
else {
LOGINFO(5, "sending BLOCK_BROADCAST (full) to " << log::Gray() << static_cast<char*>(client->m_addrString));
const uint32_t len = static_cast<uint32_t>(data->blob.size());
if (buf_size < SEND_BUF_MIN_SIZE + 1 + sizeof(uint32_t) + len) {
return 0;
}
*(p++) = static_cast<uint8_t>(MessageId::BLOCK_BROADCAST);
memcpy(p, &len, sizeof(uint32_t));
p += sizeof(uint32_t);
if (len) {
memcpy(p, data->blob.data(), len);
p += len;
}
}
return p - p0;
});
}
}
}
uint64_t P2PServer::get_random64()
{
if (!server_event_loop_thread) {
LOGERR(1, "get_random64() was called from another thread, this is not thread safe");
}
return m_rng();
}
void P2PServer::print_status()
{
MutexLock lock(m_peerListLock);
LOGINFO(0, "status" <<
"\nConnections = " << m_numConnections.load() << " (" << m_numIncomingConnections.load() << " incoming)" <<
"\nPeer list size = " << m_peerList.size() <<
"\nUptime = " << log::Duration(seconds_since_epoch() - m_pool->start_time())
);
}
void P2PServer::show_peers_async()
{
if (!uv_is_closing(reinterpret_cast<uv_handle_t*>(&m_showPeersAsync))) {
uv_async_send(&m_showPeersAsync);
}
}
void P2PServer::show_peers()
{
MutexLock lock(m_clientsListLock);
const uint64_t cur_time = seconds_since_epoch();
size_t n = 0;
for (P2PClient* client = static_cast<P2PClient*>(m_connectedClientsList->m_next); client != m_connectedClientsList; client = static_cast<P2PClient*>(client->m_next)) {
if (client->m_listenPort >= 0) {
char buf[32] = {};
log::Stream s(buf);
if (client->m_SoftwareVersion) {
s << client->software_name() << " v" << (client->m_SoftwareVersion >> 16) << '.' << (client->m_SoftwareVersion & 0xFFFF);
}
LOGINFO(0, (client->m_isIncoming ? "I\t" : "O\t")
<< log::pad_right(log::Duration(cur_time - client->m_connectedTime), 16) << '\t'
<< log::pad_right(client->m_pingTime, 4) << " ms\t\t"
<< log::pad_right(static_cast<const char*>(buf), 20) << '\t'
<< log::pad_right(client->m_broadcastMaxHeight, 10) << '\t'
<< static_cast<char*>(client->m_addrString));
++n;
}
}
LOGINFO(0, "Total: " << n << " peers");
}
int P2PServer::listen_port() const
{
const Params& params = m_pool->params();
return params.m_p2pExternalPort ? params.m_p2pExternalPort : m_listenPort;
}
int P2PServer::deserialize_block(const uint8_t* buf, uint32_t size, bool compact)
{
int result;
if ((m_blockDeserializeBuf.size() == size) && (memcmp(m_blockDeserializeBuf.data(), buf, size) == 0)) {
m_block->reset_offchain_data();
result = m_blockDeserializeResult;
}
else {
result = m_block->deserialize(buf, size, m_pool->side_chain(), &m_loop, compact);
m_blockDeserializeBuf.assign(buf, buf + size);
m_blockDeserializeResult = result;
m_lookForMissingBlocks = true;
}
return result;
}
void P2PServer::on_timer()
{
++m_timerCounter;
if (!m_initialPeerList.empty()) {
connect_to_peers(m_initialPeerList);
m_initialPeerList.clear();
}
flush_cache();
download_missing_blocks();
update_peer_list();
save_peer_list_async();
update_peer_connections();
check_zmq();
check_block_template();
}
void P2PServer::flush_cache()
{
if (!m_cache || ((m_timerCounter % 30) != 2)) {
return;
}
struct Work
{
uv_work_t req;
BlockCache* cache;
};
Work* work = new Work{};
work->req.data = work;
work->cache = m_cache;
const int err = uv_queue_work(&m_loop, &work->req,
[](uv_work_t* req)
{
BACKGROUND_JOB_START(P2PServer::flush_cache);
reinterpret_cast<Work*>(req->data)->cache->flush();
},
[](uv_work_t* req, int)
{
delete reinterpret_cast<Work*>(req->data);
BACKGROUND_JOB_STOP(P2PServer::flush_cache);
});
if (err) {
LOGERR(1, "flush_cache: uv_queue_work failed, error " << uv_err_name(err));
delete work;
}
}
void P2PServer::download_missing_blocks()
{
if (!m_lookForMissingBlocks) {
return;
}
std::vector<hash> missing_blocks;
m_pool->side_chain().get_missing_blocks(missing_blocks);
if (missing_blocks.empty()) {
m_lookForMissingBlocks = false;
m_missingBlockRequests.clear();
return;
}
MutexLock lock(m_clientsListLock);
if (m_numConnections == 0) {
return;
}
std::vector<P2PClient*> clients;
clients.reserve(m_numConnections);
for (P2PClient* client = static_cast<P2PClient*>(m_connectedClientsList->m_next); client != m_connectedClientsList; client = static_cast<P2PClient*>(client->m_next)) {
if (client->is_good()) {
clients.emplace_back(client);
}
}
if (clients.empty()) {
return;
}
ReadLock lock2(m_cachedBlocksLock);
// Try to download each block from a random client
for (const hash& id : missing_blocks) {
P2PClient* client = clients[get_random64() % clients.size()];
const uint64_t truncated_block_id = *reinterpret_cast<const uint64_t*>(id.h);
if (!m_missingBlockRequests.insert({ client->m_peerId, truncated_block_id }).second) {
// We already asked this peer about this block
// Don't try to ask another peer, leave it for another timer tick
continue;
}
if (m_cachedBlocks) {
auto it = m_cachedBlocks->find(id);
if (it != m_cachedBlocks->end()) {
LOGINFO(5, "using cached block for id = " << id);
client->handle_incoming_block_async(it->second);
continue;
}
}
const bool result = send(client,
[&id, client](void* buf, size_t buf_size) -> size_t
{
LOGINFO(5, "sending BLOCK_REQUEST for id = " << id << " to " << static_cast<char*>(client->m_addrString));
if (buf_size < SEND_BUF_MIN_SIZE) {
return 0;
}
uint8_t* p0 = reinterpret_cast<uint8_t*>(buf);
uint8_t* p = p0;
*(p++) = static_cast<uint8_t>(MessageId::BLOCK_REQUEST);
memcpy(p, id.h, HASH_SIZE);
p += HASH_SIZE;
return p - p0;
});
if (result) {
client->m_blockPendingRequests.push_back(id);
}
}
}
void P2PServer::check_zmq()
{
if ((m_timerCounter % 30) != 3) {
return;
}
const uint64_t cur_time = seconds_since_epoch();
const uint64_t last_active = m_pool->zmq_last_active();
if (cur_time >= last_active + 300) {
const uint64_t dt = static_cast<uint64_t>(cur_time - last_active);
LOGERR(1, "no ZMQ messages received from monerod in the last " << dt << " seconds, check your monerod/p2pool/network/firewall setup!!!");
m_pool->restart_zmq();
}
}
void P2PServer::check_block_template()
{
if (!m_pool->side_chain().precalcFinished()) {
return;
}
// Force update block template every 20 seconds after the initial sync is done
if (seconds_since_epoch() >= m_pool->block_template().last_updated() + 20) {
LOGINFO(4, "block template is 20 seconds old, updating it");
m_pool->update_block_template_async();
}
}
P2PServer::P2PClient::P2PClient()
: m_peerId(0)
, m_connectedTime(0)
, m_broadcastMaxHeight(0)
, m_expectedMessage(MessageId::HANDSHAKE_CHALLENGE)
, m_handshakeChallenge(0)
, m_handshakeSolutionSent(false)
, m_handshakeComplete(false)
, m_handshakeInvalid(false)
, m_listenPort(-1)
, m_fastPeerListRequestCount(0)
, m_prevIncomingPeerListRequest(0)
, m_nextOutgoingPeerListRequest(0)
, m_lastPeerListRequestTime{}
, m_peerListPendingRequests(0)
, m_protocolVersion(PROTOCOL_VERSION_1_0)
, m_SoftwareVersion(0)
, m_SoftwareID(0)
, m_pingTime(-1)
, m_lastAlive(0)
, m_lastBroadcastTimestamp(0)
, m_lastBlockrequestTimestamp(0)
, m_broadcastedHashes{}
{
}
void P2PServer::on_shutdown()
{
uv_timer_stop(&m_timer);
uv_close(reinterpret_cast<uv_handle_t*>(&m_timer), nullptr);
uv_close(reinterpret_cast<uv_handle_t*>(&m_broadcastAsync), nullptr);
uv_close(reinterpret_cast<uv_handle_t*>(&m_connectToPeersAsync), nullptr);
uv_close(reinterpret_cast<uv_handle_t*>(&m_showPeersAsync), nullptr);
}
P2PServer::P2PClient::~P2PClient()
{
}
void P2PServer::P2PClient::reset()
{
P2PServer* server = static_cast<P2PServer*>(m_owner);
if (server && (server->m_fastestPeer == this)) {
server->m_fastestPeer = nullptr;
}
Client::reset();
m_peerId = 0;
m_connectedTime = 0;
m_broadcastMaxHeight = 0;
m_expectedMessage = MessageId::HANDSHAKE_CHALLENGE;
m_handshakeChallenge = 0;
m_handshakeSolutionSent = false;
m_handshakeComplete = false;
m_handshakeInvalid = false;
m_listenPort = -1;
m_fastPeerListRequestCount = 0;
m_prevIncomingPeerListRequest = 0;
m_nextOutgoingPeerListRequest = 0;
m_lastPeerListRequestTime = {};
m_peerListPendingRequests = 0;
m_protocolVersion = PROTOCOL_VERSION_1_0;
m_SoftwareVersion = 0;
m_SoftwareID = 0;
m_pingTime = -1;
m_blockPendingRequests.clear();
m_lastAlive = 0;
m_lastBroadcastTimestamp = 0;
m_lastBlockrequestTimestamp = 0;
for (hash& h : m_broadcastedHashes) {
h = {};
}
m_broadcastedHashesIndex = 0;
}
bool P2PServer::P2PClient::on_connect()
{
P2PServer* server = static_cast<P2PServer*>(m_owner);
if (!server) {
return false;
}
if (m_isIncoming && (server->m_numIncomingConnections > server->m_maxIncomingPeers)) {
LOGINFO(5, "Connection from " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " rejected (incoming connections limit was reached)");
return false;
}
// Don't allow multiple connections to/from the same IP (except localhost)
// server->m_clientsListLock is already locked here
if (!m_addr.is_localhost()) {
for (P2PClient* client = static_cast<P2PClient*>(server->m_connectedClientsList->m_next); client != server->m_connectedClientsList; client = static_cast<P2PClient*>(client->m_next)) {
if ((client != this) && (client->m_addr == m_addr)) {
LOGINFO(5, "peer " << static_cast<char*>(m_addrString) << " is already connected as " << static_cast<char*>(client->m_addrString));
return false;
}
}
}
const uint64_t cur_time = seconds_since_epoch();
m_connectedTime = cur_time;
m_lastAlive = cur_time;
return send_handshake_challenge();
}
bool P2PServer::P2PClient::on_read(char* data, uint32_t size)
{
P2PServer* server = static_cast<P2PServer*>(m_owner);
if (!server) {
return false;
}
if ((data != m_readBuf + m_numRead) || (data + size > m_readBuf + sizeof(m_readBuf))) {
LOGERR(1, "peer " << static_cast<char*>(m_addrString) << " invalid data pointer or size in on_read()");
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
m_numRead += size;
uint8_t* buf_begin = reinterpret_cast<uint8_t*>(m_readBuf);
uint8_t* buf = buf_begin;
uint32_t bytes_left = m_numRead;
uint32_t num_block_requests = 0;
uint32_t bytes_read;
do {
MessageId id = static_cast<MessageId>(buf[0]);
// Peer must complete the handshake challenge before sending any other messages
if (!m_handshakeComplete && (id != m_expectedMessage)) {
LOGWARN(5, "peer " << static_cast<char*>(m_addrString) << " didn't send handshake messages first");
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
bytes_read = 0;
switch (id)
{
case MessageId::HANDSHAKE_CHALLENGE:
if (m_handshakeComplete) {
LOGWARN(4, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent an unexpected HANDSHAKE_CHALLENGE");
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
LOGINFO(5, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent HANDSHAKE_CHALLENGE");
if (bytes_left >= 1 + CHALLENGE_SIZE + sizeof(uint64_t)) {
bytes_read = 1 + CHALLENGE_SIZE + sizeof(uint64_t);
if (!on_handshake_challenge(buf + 1)) {
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
m_expectedMessage = MessageId::HANDSHAKE_SOLUTION;
}
break;
case MessageId::HANDSHAKE_SOLUTION:
if (m_handshakeComplete) {
LOGWARN(4, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent an unexpected HANDSHAKE_SOLUTION");
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
LOGINFO(5, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent HANDSHAKE_SOLUTION");
if (bytes_left >= 1 + HASH_SIZE + CHALLENGE_SIZE) {
bytes_read = 1 + HASH_SIZE + CHALLENGE_SIZE;
if (!on_handshake_solution(buf + 1)) {
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
}
break;
case MessageId::LISTEN_PORT:
if (m_listenPort >= 0) {
LOGWARN(4, "peer " << static_cast<char*>(m_addrString) << " sent an unexpected LISTEN_PORT");
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
LOGINFO(5, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent LISTEN_PORT");
if (bytes_left >= 1 + sizeof(int32_t)) {
bytes_read = 1 + sizeof(int32_t);
if (!on_listen_port(buf + 1)) {
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
}
break;
case MessageId::BLOCK_REQUEST:
++num_block_requests;
if (num_block_requests > 100) {
LOGWARN(4, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent too many BLOCK_REQUEST messages at once");
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
LOGINFO(5, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent BLOCK_REQUEST");
if (bytes_left >= 1 + HASH_SIZE) {
bytes_read = 1 + HASH_SIZE;
if (!on_block_request(buf + 1)) {
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
}
break;
case MessageId::BLOCK_RESPONSE:
if (m_blockPendingRequests.empty()) {
LOGWARN(4, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent an unexpected BLOCK_RESPONSE");
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
LOGINFO(5, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent BLOCK_RESPONSE");
if (bytes_left >= 1 + sizeof(uint32_t)) {
const uint32_t block_size = read_unaligned(reinterpret_cast<uint32_t*>(buf + 1));
if (bytes_left >= 1 + sizeof(uint32_t) + block_size) {
bytes_read = 1 + sizeof(uint32_t) + block_size;
const hash expected_id = m_blockPendingRequests.front();
m_blockPendingRequests.pop_front();
if (!on_block_response(buf + 1 + sizeof(uint32_t), block_size, expected_id)) {
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
}
}
break;
case MessageId::BLOCK_BROADCAST:
case MessageId::BLOCK_BROADCAST_COMPACT:
{
const bool compact = (id == MessageId::BLOCK_BROADCAST_COMPACT);
LOGINFO(6, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent " << (compact ? "BLOCK_BROADCAST_COMPACT" : "BLOCK_BROADCAST"));
if (bytes_left >= 1 + sizeof(uint32_t)) {
const uint32_t block_size = read_unaligned(reinterpret_cast<uint32_t*>(buf + 1));
if (bytes_left >= 1 + sizeof(uint32_t) + block_size) {
bytes_read = 1 + sizeof(uint32_t) + block_size;
if (!on_block_broadcast(buf + 1 + sizeof(uint32_t), block_size, compact)) {
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
}
}
}
break;
case MessageId::PEER_LIST_REQUEST:
LOGINFO(6, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent PEER_LIST_REQUEST");
if (bytes_left >= 1) {
bytes_read = 1;
if (!on_peer_list_request(buf + 1)) {
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
}
break;
case MessageId::PEER_LIST_RESPONSE:
if (m_peerListPendingRequests <= 0) {
LOGWARN(4, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent an unexpected PEER_LIST_RESPONSE");
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
LOGINFO(6, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent PEER_LIST_RESPONSE");
if (bytes_left >= 2) {
const uint32_t num_peers = buf[1];
if (num_peers > PEER_LIST_RESPONSE_MAX_PEERS) {
LOGWARN(5, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent too long peer list (" << num_peers << ')');
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
if (bytes_left >= 2u + num_peers * 19u) {
bytes_read = 2u + num_peers * 19u;
using namespace std::chrono;
m_pingTime = std::max<int64_t>(duration_cast<milliseconds>(high_resolution_clock::now() - m_lastPeerListRequestTime).count(), 0);
--m_peerListPendingRequests;
if (!on_peer_list_response(buf + 1)) {
ban(DEFAULT_BAN_TIME);
server->remove_peer_from_list(this);
return false;
}
}
}
break;
}
if (bytes_read) {
buf += bytes_read;
bytes_left -= bytes_read;
m_lastAlive = seconds_since_epoch();
}
} while (bytes_read && bytes_left);
// Move the possible unfinished message to the beginning of m_readBuf to free up more space for reading
if (buf != buf_begin) {
m_numRead = static_cast<uint32_t>(buf_begin + m_numRead - buf);
if (m_numRead > 0) {
memmove(m_readBuf, buf, m_numRead);
}
}
return true;
}
void P2PServer::P2PClient::on_read_failed(int /*err*/)
{
on_disconnected();
}
void P2PServer::P2PClient::on_disconnected()
{
P2PServer* server = static_cast<P2PServer*>(m_owner);
if (server && (server->m_fastestPeer == this)) {
server->m_fastestPeer = nullptr;
}
m_pingTime = -1;
if (!m_handshakeComplete) {
LOGWARN(5, "peer " << static_cast<char*>(m_addrString) << " disconnected before finishing handshake");
ban(DEFAULT_BAN_TIME);
if (server) {
server->remove_peer_from_list(this);
}
}
}
bool P2PServer::P2PClient::send_handshake_challenge()
{
P2PServer* owner = static_cast<P2PServer*>(m_owner);
m_handshakeChallenge = owner->get_random64();
return owner->send(this,
[this, owner](void* buf, size_t buf_size) -> size_t
{
LOGINFO(5, "sending HANDSHAKE_CHALLENGE to " << static_cast<char*>(m_addrString));
if (buf_size < SEND_BUF_MIN_SIZE) {
return 0;
}
uint8_t* p0 = reinterpret_cast<uint8_t*>(buf);
uint8_t* p = p0;
*(p++) = static_cast<uint8_t>(MessageId::HANDSHAKE_CHALLENGE);
uint64_t k = m_handshakeChallenge;
for (int i = 0; i < CHALLENGE_SIZE; ++i) {
*(p++) = k & 0xFF;
k >>= 8;
}
k = owner->get_peerId();
memcpy(p, &k, sizeof(uint64_t));
p += sizeof(uint64_t);
return p - p0;
});
}
void P2PServer::P2PClient::send_handshake_solution(const uint8_t (&challenge)[CHALLENGE_SIZE])
{
P2PServer* server = static_cast<P2PServer*>(m_owner);
struct Work
{
uv_work_t req;
P2PClient* client;
P2PServer* server;
uint32_t reset_counter;
bool is_incoming;
uint8_t challenge[CHALLENGE_SIZE];
uint64_t salt;
uint8_t solution_salt[CHALLENGE_SIZE];
hash solution;
};
Work* work = new Work{};
work->req.data = work;
work->client = this;
work->server = server;
work->reset_counter = m_resetCounter.load();
work->is_incoming = m_isIncoming;
memcpy(work->challenge, challenge, CHALLENGE_SIZE);
work->salt = server->get_random64();
const int err = uv_queue_work(&server->m_loop, &work->req,
[](uv_work_t* req)
{
BACKGROUND_JOB_START(P2PServer::send_handshake_solution);
Work* work = reinterpret_cast<Work*>(req->data);
const std::vector<uint8_t>& consensus_id = work->server->m_pool->side_chain().consensus_id();
const int consensus_id_size = static_cast<int>(consensus_id.size());
for (size_t iter = 1;; ++iter, ++work->salt) {
uint64_t k = work->salt;
for (size_t i = 0; i < CHALLENGE_SIZE; ++i) {
work->solution_salt[i] = k & 0xFF;
k >>= 8;
}
keccak_custom(
[work, &consensus_id, consensus_id_size](int offset) -> uint8_t
{
if (offset < CHALLENGE_SIZE) {
return work->challenge[offset];
}
offset -= CHALLENGE_SIZE;
if (offset < consensus_id_size) {
return consensus_id[offset];
}
return work->solution_salt[offset - consensus_id_size];
}, CHALLENGE_SIZE * 2 + static_cast<int>(consensus_id.size()), work->solution.h, HASH_SIZE);
// We might've been disconnected while working on the challenge, do nothing in this case
if (work->client->m_resetCounter.load() != work->reset_counter) {
return;
}
if (work->is_incoming) {
// This is an incoming connection, so it must do PoW, not us
return;
}
uint64_t* value = reinterpret_cast<uint64_t*>(work->solution.h);
uint64_t high;
umul128(value[HASH_SIZE / sizeof(uint64_t) - 1], CHALLENGE_DIFFICULTY, &high);
if (high == 0) {
LOGINFO(5, "found handshake challenge solution after " << iter << " iterations");
return;
}
}
},
[](uv_work_t* req, int)
{
Work* work = reinterpret_cast<Work*>(req->data);
ON_SCOPE_LEAVE(
[work]()
{
delete work;
BACKGROUND_JOB_STOP(P2PServer::send_handshake_solution);
});
// We might've been disconnected while working on the challenge, do nothing in this case
if (work->client->m_resetCounter.load() != work->reset_counter) {
return;
}
const bool result = work->server->send(work->client,
[work](void* buf, size_t buf_size) -> size_t
{
LOGINFO(5, "sending HANDSHAKE_SOLUTION to " << static_cast<char*>(work->client->m_addrString));
if (buf_size < SEND_BUF_MIN_SIZE) {
return 0;
}
uint8_t* p0 = reinterpret_cast<uint8_t*>(buf);
uint8_t* p = p0;
*(p++) = static_cast<uint8_t>(MessageId::HANDSHAKE_SOLUTION);
memcpy(p, work->solution.h, HASH_SIZE);
p += HASH_SIZE;
memcpy(p, work->solution_salt, CHALLENGE_SIZE);
p += CHALLENGE_SIZE;
if (work->client->m_handshakeComplete && !work->client->m_handshakeInvalid) {
work->client->on_after_handshake(p);
}
return p - p0;
});
if (result) {
work->client->m_handshakeSolutionSent = true;
if (work->client->m_handshakeComplete && work->client->m_handshakeInvalid) {
work->client->ban(DEFAULT_BAN_TIME);
work->server->remove_peer_from_list(work->client);
work->client->close();
}
}
else {
work->client->close();
}
});
if (err) {
LOGERR(1, "send_handshake_solution: uv_queue_work failed, error " << uv_err_name(err));
delete work;
}
}
bool P2PServer::P2PClient::check_handshake_solution(const hash& solution, const uint8_t (&solution_salt)[CHALLENGE_SIZE])
{
P2PServer* owner = static_cast<P2PServer*>(m_owner);
const std::vector<uint8_t>& consensus_id = owner->m_pool->side_chain().consensus_id();
const int consensus_id_size = static_cast<int>(consensus_id.size());
uint8_t challenge[CHALLENGE_SIZE];
uint64_t k = m_handshakeChallenge;
for (size_t i = 0; i < CHALLENGE_SIZE; ++i) {
challenge[i] = k & 0xFF;
k >>= 8;
}
hash check{};
keccak_custom(
[&challenge, &solution_salt, &consensus_id, consensus_id_size](int offset) -> uint8_t
{
if (offset < CHALLENGE_SIZE) {
return challenge[offset];
}
offset -= CHALLENGE_SIZE;
if (offset < consensus_id_size) {
return consensus_id[offset];
}
return solution_salt[offset - consensus_id_size];
}, CHALLENGE_SIZE * 2 + static_cast<int>(consensus_id.size()), check.h, HASH_SIZE);
return solution == check;
}
bool P2PServer::P2PClient::on_handshake_challenge(const uint8_t* buf)
{
P2PServer* server = static_cast<P2PServer*>(m_owner);
uint8_t challenge[CHALLENGE_SIZE];
memcpy(challenge, buf, CHALLENGE_SIZE);
uint64_t peer_id;
memcpy(&peer_id, buf + CHALLENGE_SIZE, sizeof(uint64_t));
if (peer_id == server->get_peerId()) {
LOGWARN(5, "tried to connect to self at " << static_cast<const char*>(m_addrString));
return false;
}
m_peerId = peer_id;
bool same_peer = false;
{
MutexLock lock(server->m_clientsListLock);
for (const P2PClient* client = static_cast<P2PClient*>(server->m_connectedClientsList->m_next); client != server->m_connectedClientsList; client = static_cast<P2PClient*>(client->m_next)) {
if ((client != this) && (client->m_peerId == peer_id)) {
LOGWARN(5, "tried to connect to the same peer twice: current connection " << static_cast<const char*>(client->m_addrString) << ", new connection " << static_cast<const char*>(m_addrString));
same_peer = true;
break;
}
}
}
if (same_peer) {
close();
return true;
}
send_handshake_solution(challenge);
return true;
}
bool P2PServer::P2PClient::on_handshake_solution(const uint8_t* buf)
{
hash solution;
uint8_t solution_salt[CHALLENGE_SIZE];
memcpy(&solution, buf, HASH_SIZE);
memcpy(solution_salt, buf + HASH_SIZE, CHALLENGE_SIZE);
// Check that incoming connection provided enough PoW
if (m_isIncoming) {
uint64_t* value = reinterpret_cast<uint64_t*>(solution.h);
uint64_t high;
umul128(value[HASH_SIZE / sizeof(uint64_t) - 1], CHALLENGE_DIFFICULTY, &high);
if (high) {
LOGWARN(5, "peer " << static_cast<char*>(m_addrString) << " handshake doesn't have enough PoW");
m_handshakeInvalid = true;
}
}
if (!check_handshake_solution(solution, solution_salt)) {
LOGWARN(5, "peer " << static_cast<char*>(m_addrString) << " handshake failed");
m_handshakeInvalid = true;
}
m_handshakeComplete = true;
if (!m_handshakeInvalid) {
LOGINFO(5, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " handshake completed");
}
if (m_handshakeSolutionSent) {
if (m_handshakeInvalid) {
return false;
}
return m_owner->send(this,
[this](void* buf, size_t buf_size) -> size_t
{
LOGINFO(5, "sending LISTEN_PORT and BLOCK_REQUEST for the chain tip to " << static_cast<char*>(m_addrString));
if (buf_size < SEND_BUF_MIN_SIZE) {
return 0;
}
uint8_t* p0 = reinterpret_cast<uint8_t*>(buf);
uint8_t* p = p0;
on_after_handshake(p);
return p - p0;
});
}
return true;
}
void P2PServer::P2PClient::on_after_handshake(uint8_t* &p)
{
LOGINFO(5, "sending LISTEN_PORT to " << static_cast<char*>(m_addrString));
*(p++) = static_cast<uint8_t>(MessageId::LISTEN_PORT);
const int32_t port = m_owner->listen_port();
memcpy(p, &port, sizeof(port));
p += sizeof(port);
LOGINFO(5, "sending BLOCK_REQUEST for the chain tip to " << static_cast<char*>(m_addrString));
*(p++) = static_cast<uint8_t>(MessageId::BLOCK_REQUEST);
hash empty;
memcpy(p, empty.h, HASH_SIZE);
p += HASH_SIZE;
m_blockPendingRequests.push_back(empty);
m_lastBroadcastTimestamp = seconds_since_epoch();
}
bool P2PServer::P2PClient::on_listen_port(const uint8_t* buf)
{
int32_t port;
memcpy(&port, buf, sizeof(port));
if ((port < 0) || (port >= 65536)) {
LOGWARN(5, "peer " << static_cast<char*>(m_addrString) << " sent an invalid listen port number");
return false;
}
m_listenPort = port;
static_cast<P2PServer*>(m_owner)->update_peer_in_list(m_isV6, m_addr, port);
return true;
}
bool P2PServer::P2PClient::on_block_request(const uint8_t* buf)
{
m_lastBlockrequestTimestamp = seconds_since_epoch();
hash id;
memcpy(id.h, buf, HASH_SIZE);
P2PServer* server = static_cast<P2PServer*>(m_owner);
std::vector<uint8_t> blob;
if (!server->m_pool->side_chain().get_block_blob(id, blob) && !id.empty()) {
LOGWARN(5, "got a request for block with id " << id << " but couldn't find it");
}
return server->send(this,
[this, &blob](void* buf, size_t buf_size) -> size_t
{
LOGINFO(5, "sending BLOCK_RESPONSE to " << static_cast<char*>(m_addrString));
const uint32_t len = static_cast<uint32_t>(blob.size());
if (buf_size < SEND_BUF_MIN_SIZE + 1 + sizeof(uint32_t) + len) {
return 0;
}
uint8_t* p0 = reinterpret_cast<uint8_t*>(buf);
uint8_t* p = p0;
*(p++) = static_cast<uint8_t>(MessageId::BLOCK_RESPONSE);
memcpy(p, &len, sizeof(uint32_t));
p += sizeof(uint32_t);
if (len) {
memcpy(p, blob.data(), len);
p += len;
}
return p - p0;
});
}
bool P2PServer::P2PClient::on_block_response(const uint8_t* buf, uint32_t size, const hash& expected_id)
{
if (!size) {
LOGINFO(5, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor() << " sent an empty block response");
return true;
}
P2PServer* server = static_cast<P2PServer*>(m_owner);
MutexLock lock(server->m_blockLock);
const int result = server->deserialize_block(buf, size, false);
if (result != 0) {
LOGWARN(3, "peer " << static_cast<char*>(m_addrString) << " sent an invalid block, error " << result);
return false;
}
const PoolBlock* block = server->get_block();
// Chain tip request
if (expected_id.empty()) {
const uint64_t peer_height = block->m_txinGenHeight;
const uint64_t our_height = server->m_pool->miner_data().height;
if (peer_height + 2 < our_height) {
LOGWARN(4, "peer " << static_cast<char*>(m_addrString) << " is mining on top of a stale block (mainchain height " << peer_height << ", expected >= " << our_height << ')');
return false;
}
const uint64_t cur_time = seconds_since_epoch();
if (cur_time >= m_nextOutgoingPeerListRequest) {
server->send_peer_list_request(this, cur_time);
}
}
else if (block->m_sidechainId != expected_id) {
LOGWARN(3, "peer " << static_cast<char*>(m_addrString) << " sent a wrong block: expected " << expected_id << ", got " << block->m_sidechainId);
return false;
}
const SideChain& side_chain = server->m_pool->side_chain();
const uint64_t max_time_delta = side_chain.precalcFinished() ? (side_chain.block_time() * side_chain.chain_window_size() * 4) : 0;
return handle_incoming_block_async(block, max_time_delta);
}
bool P2PServer::P2PClient::on_block_broadcast(const uint8_t* buf, uint32_t size, bool compact)
{
if (!size) {
LOGWARN(3, "peer " << static_cast<char*>(m_addrString) << " broadcasted an empty block");
return false;
}
P2PServer* server = static_cast<P2PServer*>(m_owner);
MutexLock lock(server->m_blockLock);
const int result = server->deserialize_block(buf, size, compact);
if (result != 0) {
LOGWARN(3, "peer " << static_cast<char*>(m_addrString) << " sent an invalid block, error " << result);
return false;
}
const PoolBlock* block = server->get_block();
m_broadcastMaxHeight = std::max(m_broadcastMaxHeight, block->m_sidechainHeight);
m_broadcastedHashes[m_broadcastedHashesIndex.fetch_add(1) % array_size(&P2PClient::m_broadcastedHashes)] = block->m_sidechainId;
MinerData miner_data = server->m_pool->miner_data();
if (block->m_prevId != miner_data.prev_id) {
// This peer is mining on top of a different Monero block, investigate it
const uint64_t peer_height = block->m_txinGenHeight;
const uint64_t our_height = miner_data.height;
if (peer_height < our_height) {
if (our_height - peer_height < 5) {
using namespace std::chrono;
const int64_t elapsed_ms = duration_cast<milliseconds>(high_resolution_clock::now() - miner_data.time_received).count();
if ((our_height - peer_height > 1) || (elapsed_ms > 10000)) {
LOGWARN(5, "peer " << static_cast<char*>(m_addrString) << " broadcasted a stale block (" << elapsed_ms << " ms late, mainchain height " << peer_height << ", expected >= " << our_height << "), ignoring it");
return true;
}
}
else {
LOGWARN(4, "peer " << static_cast<char*>(m_addrString) << " broadcasted an unreasonably stale block (mainchain height " << peer_height << ", expected >= " << our_height << ')');
return false;
}
}
else if (peer_height > our_height) {
if (peer_height >= our_height + 2) {
LOGWARN(3, "peer " << static_cast<char*>(m_addrString) << " is ahead on mainchain (height " << peer_height << ", your height " << our_height << "). Is your monerod stuck or lagging?");
}
}
else {
LOGINFO(4, "peer " << static_cast<char*>(m_addrString) << " is mining on an alternative mainchain tip (height " << peer_height << ")");
}
}
block->m_wantBroadcast = true;
m_lastBroadcastTimestamp = seconds_since_epoch();
return handle_incoming_block_async(block, 1800);
}
bool P2PServer::P2PClient::on_peer_list_request(const uint8_t*)
{
P2PServer* server = static_cast<P2PServer*>(m_owner);
const uint64_t cur_time = seconds_since_epoch();
const bool first = (m_prevIncomingPeerListRequest == 0);
// Allow peer list requests no more than once every 30 seconds
if (cur_time - m_prevIncomingPeerListRequest < 30) {
++m_fastPeerListRequestCount;
if (m_fastPeerListRequestCount >= 3) {
LOGWARN(4, "peer " << static_cast<char*>(m_addrString) << " is sending PEER_LIST_REQUEST too often");
return false;
}
}
m_prevIncomingPeerListRequest = cur_time;
Peer peers[PEER_LIST_RESPONSE_MAX_PEERS];
uint32_t num_selected_peers = 0;
{
MutexLock lock(server->m_clientsListLock);
// Send every 4th peer on average, selected at random
const uint32_t peers_to_send_target = std::min<uint32_t>(PEER_LIST_RESPONSE_MAX_PEERS, std::max<uint32_t>(1, server->m_numConnections / 4));
uint32_t n = 0;
for (P2PClient* client = static_cast<P2PClient*>(server->m_connectedClientsList->m_next); client != server->m_connectedClientsList; client = static_cast<P2PClient*>(client->m_next)) {
if (!client->is_good() || (client->m_addr == m_addr)) {
continue;
}
const Peer p{ client->m_isV6, client->m_addr, client->m_listenPort, 0, 0 };
++n;
// Use https://en.wikipedia.org/wiki/Reservoir_sampling algorithm
if (num_selected_peers < peers_to_send_target) {
peers[num_selected_peers++] = p;
continue;
}
uint64_t k;
umul128(server->get_random64(), n, &k);
if (k < peers_to_send_target) {
peers[k] = p;
}
}
}
// Protocol version message:
// - IPv4 address = 255.255.255.255
// - port = 65535
// - first 12 bytes of the 16-byte raw IP address are ignored by older clients if it's IPv4
// - use first 8 bytes of the 16-byte raw IP address to send supported protocol version and p2pool version
if (first) {
LOGINFO(5, "sending protocol version " << (SUPPORTED_PROTOCOL_VERSION >> 16) << '.' << (SUPPORTED_PROTOCOL_VERSION & 0xFFFF)
<< ", P2Pool version " << P2POOL_VERSION_MAJOR << '.' << P2POOL_VERSION_MINOR
<< " to peer " << log::Gray() << static_cast<char*>(m_addrString));
peers[0] = {};
*reinterpret_cast<uint32_t*>(peers[0].m_addr.data) = SUPPORTED_PROTOCOL_VERSION;
*reinterpret_cast<uint32_t*>(peers[0].m_addr.data + 4) = (P2POOL_VERSION_MAJOR << 16) | P2POOL_VERSION_MINOR;
*reinterpret_cast<uint32_t*>(peers[0].m_addr.data + 12) = 0xFFFFFFFFU;
peers[0].m_port = 0xFFFF;
if (num_selected_peers == 0) {
num_selected_peers = 1;
}
}
return server->send(this,
[this, &peers, num_selected_peers](void* buf, size_t buf_size) -> size_t
{
LOGINFO(6, "sending PEER_LIST_RESPONSE to " << static_cast<char*>(m_addrString));
if (buf_size < SEND_BUF_MIN_SIZE + 2 + num_selected_peers * 19) {
return 0;
}
uint8_t* p0 = reinterpret_cast<uint8_t*>(buf);
uint8_t* p = p0;
*(p++) = static_cast<uint8_t>(MessageId::PEER_LIST_RESPONSE);
*(p++) = static_cast<uint8_t>(num_selected_peers);
// 19 bytes per peer
for (uint32_t i = 0; i < num_selected_peers; ++i) {
const Peer& peer = peers[i];
*(p++) = peer.m_isV6 ? 1 : 0;
memcpy(p, peer.m_addr.data, sizeof(peer.m_addr.data));
p += sizeof(peer.m_addr.data);
memcpy(p, &peer.m_port, 2);
p += 2;
}
return p - p0;
});
}
bool P2PServer::P2PClient::on_peer_list_response(const uint8_t* buf)
{
P2PServer* server = static_cast<P2PServer*>(m_owner);
const uint64_t cur_time = seconds_since_epoch();
MutexLock lock(server->m_peerListLock);
const uint32_t num_peers = *(buf++);
for (uint32_t i = 0; i < num_peers; ++i) {
bool is_v6 = *(buf++) != 0;
raw_ip ip;
memcpy(ip.data, buf, sizeof(ip.data));
buf += sizeof(ip.data);
int port = 0;
memcpy(&port, buf, 2);
buf += 2;
// Treat IPv4-mapped addresses as regular IPv4 addresses
if (is_v6 && ip.is_ipv4_prefix()) {
is_v6 = false;
}
if (!is_v6) {
const uint32_t b = ip.data[12];
if ((b == 0) || (b >= 224)) {
// Ignore 0.0.0.0/8 (special-purpose range for "this network") and 224.0.0.0/3 (IP multicast and reserved ranges)
// Check for protocol version message
if ((*reinterpret_cast<uint32_t*>(ip.data + 12) == 0xFFFFFFFFU) && (port == 0xFFFF)) {
m_protocolVersion = *reinterpret_cast<uint32_t*>(ip.data);
m_SoftwareVersion = *reinterpret_cast<uint32_t*>(ip.data + 4);
m_SoftwareID = *reinterpret_cast<uint32_t*>(ip.data + 8);
LOGINFO(5, "peer " << log::Gray() << static_cast<char*>(m_addrString) << log::NoColor()
<< " supports protocol version " << (m_protocolVersion >> 16) << '.' << (m_protocolVersion & 0xFFFF)
<< ", runs " << software_name() << " v" << (m_SoftwareVersion >> 16) << '.' << (m_SoftwareVersion & 0xFFFF)
);
}
continue;
}
// Fill in default bytes for IPv4 addresses
memset(ip.data, 0, 10);
ip.data[10] = 0xFF;
ip.data[11] = 0xFF;
}
bool already_added = false;
for (Peer& p : server->m_peerList) {
if ((p.m_isV6 == is_v6) && (p.m_addr == ip)) {
already_added = true;
p.m_lastSeen = cur_time;
break;
}
}
if (!already_added && !server->is_banned(ip)) {
server->m_peerList.emplace_back(Peer{ is_v6, ip, port, 0, cur_time });
}
}
return true;
}
bool P2PServer::P2PClient::handle_incoming_block_async(const PoolBlock* block, uint64_t max_time_delta)
{
P2PServer* server = static_cast<P2PServer*>(m_owner);
SideChain& side_chain = server->m_pool->side_chain();
// Limit system clock difference between connected peers
// Check only new blocks (not added to side_chain yet)
if (max_time_delta && !side_chain.find_block(block->m_sidechainId)) {
static hash prev_checked_blocks[2];
const bool is_new = (block->m_sidechainId != prev_checked_blocks[0]) && (block->m_sidechainId != prev_checked_blocks[1]);
if (is_new) {
prev_checked_blocks[1] = prev_checked_blocks[0];
prev_checked_blocks[0] = block->m_sidechainId;
}
const uint64_t t = time(nullptr);
const uint32_t failed = ((block->m_timestamp + max_time_delta < t) || (block->m_timestamp > t + max_time_delta)) ? 1 : 0;
static uint32_t failed_history = 0;
if (is_new) {
failed_history = (failed_history << 1) | failed;
}
if (failed) {
if (is_new) {
int64_t dt = static_cast<int64_t>(block->m_timestamp - t);
char sign = '+';
if (dt < 0) {
sign = '-';
dt = -dt;
}
LOGWARN(4, "peer " << static_cast<char*>(m_addrString)
<< " sent a block " << block->m_sidechainId << " (mined by " << block->m_minerWallet << ") with an invalid timestamp " << block->m_timestamp
<< " (" << sign << dt << " seconds)");
uint32_t failed_checks = 0;
for (uint32_t k = 1; k != 0; k <<= 1) {
if (failed_history & k) {
++failed_checks;
}
}
if (failed_checks > 16) {
LOGWARN(1, "Your system clock might be invalid: " << failed_checks << " of 32 last blocks were rejected due to high timestamp diff");
}
}
return true;
}
}
if (side_chain.block_seen(*block)) {
LOGINFO(6, "block " << block->m_sidechainId << " (nonce " << block->m_nonce << ", extra_nonce " << block->m_extraNonce << ") was received before, skipping it");
return true;
}
struct Work
{
uv_work_t req;
PoolBlock block;
P2PClient* client;
P2PServer* server;
uint32_t client_reset_counter;
raw_ip client_ip;
std::vector<hash> missing_blocks;
};
Work* work = new Work{ {}, *block, this, server, m_resetCounter.load(), m_addr, {} };
work->req.data = work;
const int err = uv_queue_work(&server->m_loop, &work->req,
[](uv_work_t* req)
{
BACKGROUND_JOB_START(P2PServer::handle_incoming_block_async);
Work* work = reinterpret_cast<Work*>(req->data);
work->client->handle_incoming_block(work->server->m_pool, work->block, work->client_reset_counter, work->client_ip, work->missing_blocks);
},
[](uv_work_t* req, int /*status*/)
{
Work* work = reinterpret_cast<Work*>(req->data);
work->client->post_handle_incoming_block(work->client_reset_counter, work->missing_blocks);
delete work;
BACKGROUND_JOB_STOP(P2PServer::handle_incoming_block_async);
});
if (err != 0) {
LOGERR(1, "handle_incoming_block_async: uv_queue_work failed, error " << uv_err_name(err));
delete work;
return false;
}
return true;
}
void P2PServer::P2PClient::handle_incoming_block(p2pool* pool, PoolBlock& block, const uint32_t reset_counter, const raw_ip& addr, std::vector<hash>& missing_blocks)
{
if (!pool->side_chain().add_external_block(block, missing_blocks)) {
// Client sent bad data, disconnect and ban it
if (reset_counter == m_resetCounter.load()) {
close();
LOGWARN(3, "peer " << static_cast<char*>(m_addrString) << " banned for " << DEFAULT_BAN_TIME << " seconds");
}
else {
const log::hex_buf addr_hex(addr.data, sizeof(addr.data));
LOGWARN(3, "IP " << addr_hex << " banned for " << DEFAULT_BAN_TIME << " seconds");
}
P2PServer* server = pool->p2p_server();
server->ban(addr, DEFAULT_BAN_TIME);
server->remove_peer_from_list(addr);
}
}
void P2PServer::P2PClient::post_handle_incoming_block(const uint32_t reset_counter, std::vector<hash>& missing_blocks)
{
// We might have been disconnected while side_chain was adding the block
// In this case we can't send BLOCK_REQUEST messages on this connection anymore
if (reset_counter != m_resetCounter.load()) {
return;
}
if (missing_blocks.empty()) {
return;
}
P2PServer* server = static_cast<P2PServer*>(m_owner);
// If the initial sync is not finished yet, try to ask the fastest peer too
P2PClient* c = server->m_fastestPeer;
if (c && (c != this) && !server->m_pool->side_chain().precalcFinished()) {
LOGINFO(5, "peer " << static_cast<char*>(c->m_addrString) << " is faster, sending BLOCK_REQUEST to it too");
c->post_handle_incoming_block(c->m_resetCounter.load(), missing_blocks);
}
ReadLock lock(server->m_cachedBlocksLock);
for (const hash& id : missing_blocks) {
if (server->m_cachedBlocks) {
auto it = server->m_cachedBlocks->find(id);
if (it != server->m_cachedBlocks->end()) {
LOGINFO(5, "using cached block for id = " << id);
handle_incoming_block_async(it->second);
continue;
}
}
const bool result = server->send(this,
[this, &id](void* buf, size_t buf_size) -> size_t
{
LOGINFO(5, "sending BLOCK_REQUEST for id = " << id << " to " << static_cast<char*>(m_addrString));
if (buf_size < SEND_BUF_MIN_SIZE + 1 + HASH_SIZE) {
return 0;
}
uint8_t* p0 = reinterpret_cast<uint8_t*>(buf);
uint8_t* p = p0;
*(p++) = static_cast<uint8_t>(MessageId::BLOCK_REQUEST);
memcpy(p, id.h, HASH_SIZE);
p += HASH_SIZE;
return p - p0;
});
if (!result) {
return;
}
m_blockPendingRequests.push_back(id);
}
}
const char* P2PServer::P2PClient::software_name() const
{
switch (m_SoftwareID) {
case 0:
return "P2Pool";
case 0x624F6F47UL:
return "GoObserver";
default:
return "Unknown";
}
}
} // namespace p2pool